DeepSeek-R1技术突破:纯RL训练竟能激发大模型"反思"能力?

开发|界面|引擎|交付|副驾------重写全栈法则:AI原生的倍速造应用流

来自全栈程序员 nine 的探索与实践,持续迭代中。

欢迎关注评论私信交流~

在AI领域,大模型的推理能力一直是研究热点。2025年初,DeepSeek团队发布的R1模型带来了一项令人惊讶的发现:仅通过强化学习(RL)训练,无需监督微调(SFT),就能让大模型自发产生带有反思的思维链(long CoT)。这一发现颠覆了此前行业对模型训练范式的认知。

从OpenAI o1到DeepSeek-R1的认知转变

最初,业界普遍认为像OpenAI o1这样的先进模型需要将推理时扩展(Inference/test-time scaling)和强化学习作为两个独立模块。这种认知源于一个基本假设:模型无法自发产生复杂思维链,必须通过显式引导

然而,DeepSeek-R1-Zero的实验结果打破了这一假设。研究团队仅通过以下简单设置:

graph LR A[基础模型] --> B[RL训练] B --> C[规则奖励系统] C --> D[准确性奖励] C --> E[格式奖励]

就观察到了模型行为的惊人进化:

  • 随着训练步数增加,回答长度自然增长
  • 在某个训练阶段自发出现自我评估行为
  • 无需人工标注数据,就能产生结构化推理过程

DeepSeek-R1的双阶段训练策略

基于Zero的实验发现,DeepSeek团队设计了创新的两阶段训练方案:

graph TD A[基础模型] --> B[冷启动SFT] B --> C[第一阶段RL] C --> D[生成新数据集] D --> E[第二阶段SFT] E --> F[第二阶段RL] F --> G[最终模型]

关键创新点在于:

  1. 仅使用约1000条高质量冷启动数据进行初始SFT
  2. RL阶段采用纯规则奖励系统,避免奖励黑客问题
  3. 利用RL中间产物自动扩展训练数据

行业影响与未来展望

这一技术路径显示出几大优势:

  1. 训练效率提升:相比传统方法减少了对海量标注数据的依赖
  2. 成本降低:规则奖励系统比训练神经网络RM更经济
  3. 能力涌现:证明了模型可以通过RL自发发展出高级推理能力

目前,DeepSeek-R1在多项基准测试中表现优异,特别是在AIME测试中,通过多数投票策略使准确率从71%提升至86.7%,超越了OpenAI o1的同期版本。

这一发现不仅为大模型训练提供了新思路,也引发了关于"模型自发能力涌现"的深层思考。未来,结合RL与推理时扩展的混合方法,可能会成为大模型发展的主流方向。

相关推荐
智海观潮11 小时前
DeepSeek在大数据领域正掀起一场深刻的变革
大数据·ai·deepseek
雪碧聊技术3 天前
机器学习的算法有哪些?
监督学习·强化学习·无监督学习·半监督学习·机器学习的算法
山顶夕景3 天前
【LLM】Kimi-K2模型架构(MuonClip 优化器等)
大模型·llm·agent·强化学习·智能体
青梅主码4 天前
Artificial Analysis《2025年上半年人工智能应用报告》Google、xAI、DeepSeek崛起,大模型洗牌
aigc·ai编程·deepseek
charlee444 天前
PandasAI连接LLM进行智能数据分析
ai·数据分析·llm·pandasai·deepseek
FIT2CLOUD飞致云5 天前
七月月报丨MaxKB在企业环境中实现AI落地的具体场景盘点
人工智能·开源·deepseek
陈佬昔没带相机6 天前
Dify MCP功能实测,小参数模型竟然全军覆没!
ollama·deepseek·mcp
量子位7 天前
WAIC抢先爆料:金融“黑马”大模型超DeepSeek刷新SOTA,论文已上线
deepseek
Younglina7 天前
🔮 用Vue3+TypeScript打造沉浸式AI塔罗牌占卜应用 > 一个集成DeepSeek AI、支持PWA的现代化塔罗牌Web应用开发实战分享
前端·vue.js·deepseek
ziix7 天前
多源信息融合智能投资【“图神经网络+强化学习“的融合架构】【低配显卡正常运行】
人工智能·深度学习·神经网络·强化学习·图神经网络·gnn