DeepSeek-R1技术突破:纯RL训练竟能激发大模型"反思"能力?

开发|界面|引擎|交付|副驾------重写全栈法则:AI原生的倍速造应用流

来自全栈程序员 nine 的探索与实践,持续迭代中。

欢迎关注评论私信交流~

在AI领域,大模型的推理能力一直是研究热点。2025年初,DeepSeek团队发布的R1模型带来了一项令人惊讶的发现:仅通过强化学习(RL)训练,无需监督微调(SFT),就能让大模型自发产生带有反思的思维链(long CoT)。这一发现颠覆了此前行业对模型训练范式的认知。

从OpenAI o1到DeepSeek-R1的认知转变

最初,业界普遍认为像OpenAI o1这样的先进模型需要将推理时扩展(Inference/test-time scaling)和强化学习作为两个独立模块。这种认知源于一个基本假设:模型无法自发产生复杂思维链,必须通过显式引导

然而,DeepSeek-R1-Zero的实验结果打破了这一假设。研究团队仅通过以下简单设置:

graph LR A[基础模型] --> B[RL训练] B --> C[规则奖励系统] C --> D[准确性奖励] C --> E[格式奖励]

就观察到了模型行为的惊人进化:

  • 随着训练步数增加,回答长度自然增长
  • 在某个训练阶段自发出现自我评估行为
  • 无需人工标注数据,就能产生结构化推理过程

DeepSeek-R1的双阶段训练策略

基于Zero的实验发现,DeepSeek团队设计了创新的两阶段训练方案:

graph TD A[基础模型] --> B[冷启动SFT] B --> C[第一阶段RL] C --> D[生成新数据集] D --> E[第二阶段SFT] E --> F[第二阶段RL] F --> G[最终模型]

关键创新点在于:

  1. 仅使用约1000条高质量冷启动数据进行初始SFT
  2. RL阶段采用纯规则奖励系统,避免奖励黑客问题
  3. 利用RL中间产物自动扩展训练数据

行业影响与未来展望

这一技术路径显示出几大优势:

  1. 训练效率提升:相比传统方法减少了对海量标注数据的依赖
  2. 成本降低:规则奖励系统比训练神经网络RM更经济
  3. 能力涌现:证明了模型可以通过RL自发发展出高级推理能力

目前,DeepSeek-R1在多项基准测试中表现优异,特别是在AIME测试中,通过多数投票策略使准确率从71%提升至86.7%,超越了OpenAI o1的同期版本。

这一发现不仅为大模型训练提供了新思路,也引发了关于"模型自发能力涌现"的深层思考。未来,结合RL与推理时扩展的混合方法,可能会成为大模型发展的主流方向。

相关推荐
大模型真好玩8 小时前
OCR技术简史: 从深度学习到大模型,最强OCR大模型花落谁家
人工智能·python·deepseek
武子康1 天前
DeepSeek-OCR 原理剖析|上下文光学压缩、Gundam 动态分辨率与并发预期 附代码
深度学习·aigc·deepseek
后端小肥肠2 天前
【n8n入门系列】输入抖音分享链接,3步自动提无水印视频 + 文案,小白也能上手!
agent·deepseek·mcp
超级神性造梦机器2 天前
当开源 OCR 革命撞上多模态成本困局:我们如何用 Gateone.ai 把 DeepSeek-OCR 变成 “印钞机”
llm·deepseek
Blessed_Li3 天前
DeepSeek-OCR深度解析:新一代开源OCR模型的技术突破与核心优势
ocr·deepseek
武子康3 天前
AI研究-109-具身智能 机器人模型验证SOP流程详解|仿真 现实 回放 模板&理论
人工智能·机器人·强化学习·ros2·具身智能·仿真测试·a/b测试
marsggbo3 天前
LLM 场景下的强化学习技术扫盲
llm·强化学习·ppo·dpo·grpo
wanzhong23333 天前
Deepseek-ocr论文精读
深度学习·ocr·多模态·deepseek
算家计算3 天前
DeepSeek-OCR本地部署教程:DeepSeek突破性开创上下文光学压缩,10倍效率重构文本处理范式
人工智能·开源·deepseek
2401_841495643 天前
【强化学习】动态规划算法
人工智能·python·算法·动态规划·强化学习·策略迭代·价值迭代