DeepSeek-R1技术突破:纯RL训练竟能激发大模型"反思"能力?

开发|界面|引擎|交付|副驾------重写全栈法则:AI原生的倍速造应用流

来自全栈程序员 nine 的探索与实践,持续迭代中。

欢迎关注评论私信交流~

在AI领域,大模型的推理能力一直是研究热点。2025年初,DeepSeek团队发布的R1模型带来了一项令人惊讶的发现:仅通过强化学习(RL)训练,无需监督微调(SFT),就能让大模型自发产生带有反思的思维链(long CoT)。这一发现颠覆了此前行业对模型训练范式的认知。

从OpenAI o1到DeepSeek-R1的认知转变

最初,业界普遍认为像OpenAI o1这样的先进模型需要将推理时扩展(Inference/test-time scaling)和强化学习作为两个独立模块。这种认知源于一个基本假设:模型无法自发产生复杂思维链,必须通过显式引导

然而,DeepSeek-R1-Zero的实验结果打破了这一假设。研究团队仅通过以下简单设置:

graph LR A[基础模型] --> B[RL训练] B --> C[规则奖励系统] C --> D[准确性奖励] C --> E[格式奖励]

就观察到了模型行为的惊人进化:

  • 随着训练步数增加,回答长度自然增长
  • 在某个训练阶段自发出现自我评估行为
  • 无需人工标注数据,就能产生结构化推理过程

DeepSeek-R1的双阶段训练策略

基于Zero的实验发现,DeepSeek团队设计了创新的两阶段训练方案:

graph TD A[基础模型] --> B[冷启动SFT] B --> C[第一阶段RL] C --> D[生成新数据集] D --> E[第二阶段SFT] E --> F[第二阶段RL] F --> G[最终模型]

关键创新点在于:

  1. 仅使用约1000条高质量冷启动数据进行初始SFT
  2. RL阶段采用纯规则奖励系统,避免奖励黑客问题
  3. 利用RL中间产物自动扩展训练数据

行业影响与未来展望

这一技术路径显示出几大优势:

  1. 训练效率提升:相比传统方法减少了对海量标注数据的依赖
  2. 成本降低:规则奖励系统比训练神经网络RM更经济
  3. 能力涌现:证明了模型可以通过RL自发发展出高级推理能力

目前,DeepSeek-R1在多项基准测试中表现优异,特别是在AIME测试中,通过多数投票策略使准确率从71%提升至86.7%,超越了OpenAI o1的同期版本。

这一发现不仅为大模型训练提供了新思路,也引发了关于"模型自发能力涌现"的深层思考。未来,结合RL与推理时扩展的混合方法,可能会成为大模型发展的主流方向。

相关推荐
GRITJW7 小时前
强化学习系统性学习笔记(一):从理论基础到策略优化
强化学习
、、、、南山小雨、、、、2 天前
Pytorch强化学习demo
pytorch·深度学习·机器学习·强化学习
段智华3 天前
“AI+“行动下的可控智能体:GPT-5 与 GPT-OSS 高性能推理 安全可控 产业落地 GPT-OSS 一可控AI目前全球唯一开源解决方案
强化学习·大模型微调
哥不是小萝莉4 天前
了解DeepSeek V3.2和Claude Sonnet 4.5
deepseek·claude 4.5
大模型真好玩4 天前
架构大突破! DeepSeek-V3.2发布,五分钟速通DeepSeek-V3.2核心特性
人工智能·python·deepseek
算家计算4 天前
DeepSeek发布新模型!采用全新稀疏注意力架构设计,与国产芯片协同优化
人工智能·开源·deepseek
量子位4 天前
DeepSeek突然拥抱国产GPU语言!TileLang对标CUDA替代Triton,华为昇腾Day0官宣支持适配
ai编程·deepseek
大千AI助手4 天前
MATH-500:大模型数学推理能力评估基准
人工智能·大模型·llm·强化学习·评估基准·数学推理能力·math500
FIT2CLOUD飞致云4 天前
推出工具商店,工作流新增支持循环、意图识别、文生视频和图生视频节点,MaxKB v2.2.0版本发布
人工智能·开源·deepseek
JackieTse4 天前
DeepSeek-V3.2-Exp 技术报告解读
deepseek