学习笔记(32):matplotlib绘制简单图表-数据分布图

学习笔记(32):matplotlib绘制简单图表-数据分布图

1、引用

import seaborn as sns

import pandas as pd

import matplotlib.pyplot as plt

这部分是导入必要的库:

  • seaborn 提供高级数据可视化功能
  • pandas 用于数据处理
  • matplotlib.pyplot 提供基础绘图功能

2、导入数据和创建图

2.1、导入数据

data = pd.read_csv('../../data/data.csv')

使用 pandas 读取 CSV 文件并将数据存储在data变量中。文件路径../../data/data.csv表示向上两级目录后进入 data 文件夹读取 data.csv 文件。

data.csv

name,age,score

Alice,12,66

lisa,15,88

helen,18,78

alisa,12,96

jerry,20,55

Bob,25,70

sally,18,85

2.2、单变量分布

单变量分布(直方图+核密度估计)

sns.histplot(data['age'], kde=True)

plt.title('Distribution of age')

plt.xlabel('Age')

plt.ylabel('Density') # 对于带KDE的直方图

plt.show()

  1. sns.histplot(data['age'], kde=True) - 使用 seaborn 绘制 age 列的直方图,并启用核密度估计 (KDE)
  2. plt.title('Distribution of age') - 设置图表标题
  3. plt.xlabel('Age')plt.ylabel('Density') - 设置坐标轴标签
  4. plt.show() - 显示图表

2.3、多变量联合分布可视化:

多变量联合分布

g = sns.jointplot(x='age', y='score', data=data, kind='scatter')

g.fig.suptitle('Age vs Score') # 添加联合分布图的标题

plt.subplots_adjust(top=0.9) # 调整标题位置

plt.show()

  1. sns.jointplot(...) - 创建一个联合分布图,展示 age 和 score 两列之间的关系
    • x='age'y='score' - 指定要绘制的两个变量
    • data=data - 指定数据源
    • kind='scatter' - 指定散点图类型

这段代码类似:sns.jointplot(x=data['age'], y=data['score'], kind='scatter')

  1. g.fig.suptitle('Age vs Score') - 设置整个联合分布图的标题
  2. plt.subplots_adjust(top=0.9) - 调整图表布局,为标题腾出空间
  3. plt.show() - 显示图表

2.4、总结

这段代码通过 seaborn 库实现了两种常见的数据可视化:

  1. 单变量分析 - 展示 age 列的分布情况,使用直方图和核密度估计曲线
  2. 双变量分析 - 展示 age 和 score 之间的关系,使用散点图

这两种可视化方式可以帮助数据分析师快速了解数据的分布特征和变量间的关系。

3、代码和执行结果

python 复制代码
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('../../data/data.csv')

# 单变量分布(直方图+核密度估计)
sns.histplot(data['age'], kde=True)
plt.title('Distribution of age')
plt.xlabel('Age')
plt.ylabel('Density')  # 对于带KDE的直方图
plt.show()

# 多变量联合分布
g=sns.jointplot(x='age', y='score', data=data, kind='scatter')
g.fig.suptitle('Age vs Score')  # 添加联合分布图的标题
plt.subplots_adjust(top=0.9)    # 调整标题位置
plt.show()

执行结果:

图一:

图二:

相关推荐
数字芯片实验室1 小时前
分享一个可以学习正则表达式的网址:Pythex.org
学习·正则表达式
陈洪奇2 小时前
注册中心学习笔记整理
笔记·学习
光影少年2 小时前
从前端转go开发的学习路线
前端·学习·golang
兴趣使然_5 小时前
【笔记】使用 html 创建网址快捷方式
笔记·html·js
aramae7 小时前
C++ -- STL -- vector
开发语言·c++·笔记·后端·visual studio
饕餮争锋11 小时前
设计模式笔记_创建型_建造者模式
笔记·设计模式·建造者模式
萝卜青今天也要开心11 小时前
2025年上半年软件设计师考后分享
笔记·学习
amazinging11 小时前
北京-4年功能测试2年空窗-报培训班学测开-第四十七天
python·学习·selenium
吃货界的硬件攻城狮12 小时前
【STM32 学习笔记】SPI通信协议
笔记·stm32·学习