【教程】基于无人机的大豆光合效率研究

在追求田间大豆高产的过程中,光合作用效率被视为一个至关重要的因素,本文将介绍一种基于无人机的大豆光合效率研究方法,可对大豆冠层性状进行无损测量(最高单架次可作业10万亩),通过全自动提取分析大豆种植小区的NDGI、RGRI、GNDVI等植被指数并进行更精准的图像分割,比较不同的光谱指数高低来判断大豆的光合作用强弱,进一步分析比较它们的产量或者株型等。

工具/材料

① 无人机(搭载可见光、多光谱、高光谱镜头均可,本次实验搭载多光谱)

②PhenoAI air分析系统

方法/步骤

步骤一:无人机飞行进行图像采集

步骤二:利用拼接软件对无人机图像进行影像处理

步骤三:使用PhenoAI air对图像进行数据分析,仅需点击三步即可(①标记小区②尺度校正③点击分析)

*分析结果自动弹出(精准分割各植被的轮廓标记图及数据汇总表)

结果

本文以NDGI、GBRI、RGRI作为判断大豆光合作用的强弱,可以预见的是,提高大豆育种研究效率的下一个突破将高度依赖于表型分析过程的自动化,从而利用大豆全生育期中的基因组和量化的表型信息,将基因型和大豆表型相关联。

PhenoAI air是一款集无人机高效采集和图像智能分析为一体的表型采集系统,帮助用户快速测量苗情苗势、抗逆选育等。自动化提取各类大田植物和草业的农艺性状并精准量化表型信息,不论是高光谱、多光谱还是可见光图像,都可一键分析,精准分割,同时分析图表自动化保存,并描出植被轮廓方便用户查看识别精度。支持拓展PhenoAI Flow 进行表型数据的深度学习建模和挖掘,还可搭载可视化多组学AI分析平台GSBrain,完成从表型提取到基因挖掘的整体链路。

相关推荐
应用市场7 小时前
无人机组队编队与相对定位原理详解
无人机
云卓SKYDROID14 小时前
无人机中继器技术难点
无人机·遥控器·中继器·高科技·云卓科技
梦想的初衷~17 小时前
Python驱动的无人机多光谱-点云融合技术在生态三维建模与碳储量、生物量、LULC估算中的全流程实战
python·无人机·遥感·多光谱
电棍23319 小时前
工程记录:使用tello edu无人机进行计算机视觉工作(手势识别,yolo3搭载)
人工智能·计算机视觉·无人机
szxinmai主板定制专家2 天前
基于ARM+FPGA的无人机数据采集卡,6通道24bit采集
arm开发·嵌入式硬件·fpga开发·无人机·能源
Tfly__2 天前
Ubuntu 20.04 安装Aerial Gym Simulator - 基于 Gym 的无人机强化学习仿真器
linux·人工智能·ubuntu·github·无人机·强化学习·运动规划
云卓SKYDROID3 天前
飞控信号模块技术要点与难点分析
人工智能·无人机·航电系统·高科技·云卓科技
哈泽尔都3 天前
运动控制教学——5分钟学会PRM算法!
人工智能·单片机·算法·数学建模·贪心算法·机器人·无人机
ARM+FPGA+AI工业主板定制专家7 天前
基于ZYNQ FPGA+AI+ARM 的卷积神经网络加速器设计
人工智能·fpga开发·cnn·无人机·rk3588
时空自由民.7 天前
无人机系统耗电,低功耗管理问题解决方法(chatgpt)
单片机·嵌入式硬件·无人机