深度学习之----对抗生成网络-pytorch-CycleGAN-and-pix2pix

在生成对抗网络(GAN)中,生成器与判别器之间的关系可视为一种高度游戏化的对抗过程。

生成器的目标是创造出尽可能真实的样本,以"欺骗"判别器,使其无法区分生成样本与真实样本。而判别器则负责区分输入数据的真实性,旨在提高识别虚假样本的准确性。

这种双重角色形成了一个动态博弈,两个网络在训练过程中持续互相竞争。

具体而言,生成器通过学习从随机噪声中提取出有效特征,逐步提升其输出结果的质量。

每当生成器成功欺骗了判别器时,它就获得了一次胜利,这促使其继续优化输出。

反过来,判别器根据生成样本和真实样本进行多次迭代训练,从而提升其辨别能力。

这种互相强化的过程,使得最终结果趋于一种均衡状态:此时生成样本在质量上接近真实数据,而判别器则难以进一步提高鉴别能力。

这种对抗关系的重要性不仅体现在GAN模型的有效性,还使得该算法能够自我增强和优化,从而催生了许多创新应用。

例如,在图像处理领域,通过这种对抗机制,可以实现高质量角色图像、风格转换等功能。因此,理解生成器与判别器之间复杂而又精妙的对抗关系,对于深入掌握生成对抗网络算法至关重要。

详细请看下图:

通过不断的参数调整,最终得出最终优化参数

判别器是这样判别真伪的

相关推荐
盼小辉丶1 小时前
图机器学习(11)——链接预测
人工智能·机器学习·图机器学习
CareyWYR2 小时前
每周AI论文速递(250714-250718)
人工智能
想要成为计算机高手2 小时前
9. isaacsim4.2教程-ROS加相机/CLOCK
人工智能·机器人·ros·仿真·具身智能·isaacsim
Elastic 中国社区官方博客2 小时前
AI 驱动的仪表板:从愿景到 Kibana
大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索·kibana
西柚小萌新2 小时前
【大模型:知识图谱】--6.Neo4j DeskTop安装+使用
人工智能·知识图谱
杨小扩2 小时前
开发者进化论:驾驭AI,开启软件工程新纪元
人工智能·软件工程
请站在我身后2 小时前
无声视频自动配音效,开源模型thinksound 和mmaudio复现
人工智能·深度学习·算法·计算机视觉·aigc
咖啡星人k2 小时前
PandaWiki与GitBook深度对比:AI时代的知识管理工具,选谁好?
人工智能·深度学习·神经网络
往日情怀酿做酒 V17639296382 小时前
深度学习和神经网络的介绍
人工智能·深度学习·神经网络
码狂☆2 小时前
LLaMA.cpp HTTP 服务参数: --pooling 嵌入模型 池化类型详解
人工智能