深度学习之----对抗生成网络-pytorch-CycleGAN-and-pix2pix

在生成对抗网络(GAN)中,生成器与判别器之间的关系可视为一种高度游戏化的对抗过程。

生成器的目标是创造出尽可能真实的样本,以"欺骗"判别器,使其无法区分生成样本与真实样本。而判别器则负责区分输入数据的真实性,旨在提高识别虚假样本的准确性。

这种双重角色形成了一个动态博弈,两个网络在训练过程中持续互相竞争。

具体而言,生成器通过学习从随机噪声中提取出有效特征,逐步提升其输出结果的质量。

每当生成器成功欺骗了判别器时,它就获得了一次胜利,这促使其继续优化输出。

反过来,判别器根据生成样本和真实样本进行多次迭代训练,从而提升其辨别能力。

这种互相强化的过程,使得最终结果趋于一种均衡状态:此时生成样本在质量上接近真实数据,而判别器则难以进一步提高鉴别能力。

这种对抗关系的重要性不仅体现在GAN模型的有效性,还使得该算法能够自我增强和优化,从而催生了许多创新应用。

例如,在图像处理领域,通过这种对抗机制,可以实现高质量角色图像、风格转换等功能。因此,理解生成器与判别器之间复杂而又精妙的对抗关系,对于深入掌握生成对抗网络算法至关重要。

详细请看下图:

通过不断的参数调整,最终得出最终优化参数

判别器是这样判别真伪的

相关推荐
mortimer1 小时前
Hugging Face 下载模型踩坑记:从符号链接到网络错误
人工智能·python·ai编程
一株月见草哇4 小时前
Matlab(4)
人工智能·算法·matlab
IMER SIMPLE4 小时前
人工智能-python-机器学习-线性回归与梯度下降:理论与实践
人工智能·python·机器学习
lxmyzzs4 小时前
【图像算法 - 12】OpenCV-Python 入门指南:图像视频处理与可视化(代码实战 + 视频教程 + 人脸识别项目讲解)
人工智能·opencv·计算机视觉
hans汉斯4 小时前
基于深度学习的苹果品质智能检测算法研究
人工智能·深度学习·算法
2401_831896034 小时前
深度学习(5):激活函数
人工智能·深度学习
mit6.8245 小时前
[Robotics_py] 机器人运动模型 | `update`函数 | 微积分&矩阵
人工智能·python·算法
有才不一定有德5 小时前
GPT-5 提示词指南核心技巧总结
人工智能·chatgpt·开源
一枝小雨5 小时前
opencv:直方图
人工智能·python·opencv·计算机视觉
deephub5 小时前
Dots.ocr:告别复杂多模块架构,1.7B参数单一模型统一处理所有OCR任务22
人工智能·深度学习·神经网络·ocr