python学智能算法(二十六)|SVM-拉格朗日函数构造

【1】引言

前序学习进程中,已经了解了拉格朗日乘数法求极值的基本原理,也了解了寻找最佳超平面就是寻找最佳分隔距离

这篇文章的学习目标是:使用拉格朗日乘数法获取最佳的分隔距离。

【2】构造拉格朗日函数

目标函数

首先是目标函数f:
f = min ⁡ 1 2 ∥ w ∥ 2 f=\min\frac{1}{2}{\left\|w\right\|}^2 f=min21∥w∥2

然后是约束函数g:

之前定义了函数距离F:
F = min ⁡ i = 1... m y i ( w ⋅ x i + b ) F=\min_{i=1...m}y_{i}({w \cdot x_{i}+b}) F=i=1...mminyi(w⋅xi+b)

以及几何距离δ:
δ = min ⁡ i = 1... m y i ( w ∥ w ∥ ⋅ x + b ∥ w ∥ ) \delta=\min_{i=1...m}y_{i}(\frac{w}{\left\|w\right\|}\cdot x+\frac{b}{\left\|w\right\|}) δ=i=1...mminyi(∥w∥w⋅x+∥w∥b)

约束函数

在引出目标函数f的过程中,使用的方法是:等比率调整权重矩阵w

和偏执量b,使得F=1。

所以才会有最佳超平面对应的最大分隔距离δmax:
δ m a x = max ⁡ 1 ∥ w ∥ \delta_{max}=\max{\frac{1}{\left\|w\right\|}} δmax=max∥w∥1

也是据此才转化出来的目标函数f。

我们在理解这个转化的时候可能过于简略,没有强调一个细节:

  • F=1是对最小的函数距离F调整权重矩阵w和偏置量b获得, 每个候选超平面都先将最小函数距离调整到1,;
    然后再来对比调整后的权重矩阵w,最小的w对应最大的f。

再强调一遍:
每个超平面的最小函数距离F都先调整为1,然后对比挑出来的所有1对应的权重矩阵w,取最小w对应的超平面为最佳超平面。

为此,将约束函数的定义重新也回到函数距离F的应用上,将F的定义改写成g:
g = y i ( w ⋅ x i + b ) ≥ 1 g=y_{i}(w \cdot x_{i}+b)\geq1 g=yi(w⋅xi+b)≥1

或者:
g = y i ( w ⋅ x i + b ) − 1 ≥ 0 g=y_{i}(w \cdot x_{i}+b)-1\geq0 g=yi(w⋅xi+b)−1≥0

g就是约束函数。

在此基础上,构造拉格朗日函数:
L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 m α i [ y i ( w ⋅ x i + b ) − 1 ] L(w,b,\alpha)=\frac{1}{2}{\left\|w\right\|}^2-\sum_{i=1}^{m}\alpha_{i}[y_{i}(w\cdot x_{i}+b)-1] L(w,b,α)=21∥w∥2−i=1∑mαi[yi(w⋅xi+b)−1]上式使用了自动求和符号,这是因为拉格朗日函数需要感知每一个约束条件,只有每个约束条件都满足,才能获得真正的最优解。

这里的每个约束条件都分配了单独的因子 α i \alpha_{i} αi。

总结

学习了SVM算法中的拉格朗日函数构造方法。

相关推荐
万岳科技程序员小金1 小时前
餐饮、跑腿、零售多场景下的同城外卖系统源码扩展方案
人工智能·小程序·软件开发·app开发·同城外卖系统源码·外卖小程序·外卖app开发
桐果云1 小时前
解锁桐果云零代码数据平台能力矩阵——赋能零售行业数字化转型新动能
大数据·人工智能·矩阵·数据挖掘·数据分析·零售
CHANG_THE_WORLD2 小时前
并发编程指南 同步操作与强制排序
开发语言·c++·算法
gaoshou453 小时前
代码随想录训练营第三十一天|LeetCode56.合并区间、LeetCode738.单调递增的数字
数据结构·算法
二向箔reverse3 小时前
深度学习中的学习率优化策略详解
人工智能·深度学习·学习
幂简集成3 小时前
基于 GPT-OSS 的在线编程课 AI 助教追问式对话 API 开发全记录
人工智能·gpt·gpt-oss
自信的小螺丝钉3 小时前
Leetcode 240. 搜索二维矩阵 II 矩阵 / 二分
算法·leetcode·矩阵
AI浩3 小时前
【面试题】介绍一下BERT和GPT的训练方式区别?
人工智能·gpt·bert
悠哉悠哉愿意3 小时前
【机器学习学习笔记】线性回归实现与应用
笔记·学习·机器学习
Ronin-Lotus3 小时前
深度学习篇---SENet网络结构
人工智能·深度学习