python学智能算法(二十六)|SVM-拉格朗日函数构造

【1】引言

前序学习进程中,已经了解了拉格朗日乘数法求极值的基本原理,也了解了寻找最佳超平面就是寻找最佳分隔距离

这篇文章的学习目标是:使用拉格朗日乘数法获取最佳的分隔距离。

【2】构造拉格朗日函数

目标函数

首先是目标函数f:
f = min ⁡ 1 2 ∥ w ∥ 2 f=\min\frac{1}{2}{\left\|w\right\|}^2 f=min21∥w∥2

然后是约束函数g:

之前定义了函数距离F:
F = min ⁡ i = 1... m y i ( w ⋅ x i + b ) F=\min_{i=1...m}y_{i}({w \cdot x_{i}+b}) F=i=1...mminyi(w⋅xi+b)

以及几何距离δ:
δ = min ⁡ i = 1... m y i ( w ∥ w ∥ ⋅ x + b ∥ w ∥ ) \delta=\min_{i=1...m}y_{i}(\frac{w}{\left\|w\right\|}\cdot x+\frac{b}{\left\|w\right\|}) δ=i=1...mminyi(∥w∥w⋅x+∥w∥b)

约束函数

在引出目标函数f的过程中,使用的方法是:等比率调整权重矩阵w

和偏执量b,使得F=1。

所以才会有最佳超平面对应的最大分隔距离δmax:
δ m a x = max ⁡ 1 ∥ w ∥ \delta_{max}=\max{\frac{1}{\left\|w\right\|}} δmax=max∥w∥1

也是据此才转化出来的目标函数f。

我们在理解这个转化的时候可能过于简略,没有强调一个细节:

  • F=1是对最小的函数距离F调整权重矩阵w和偏置量b获得, 每个候选超平面都先将最小函数距离调整到1,;
    然后再来对比调整后的权重矩阵w,最小的w对应最大的f。

再强调一遍:
每个超平面的最小函数距离F都先调整为1,然后对比挑出来的所有1对应的权重矩阵w,取最小w对应的超平面为最佳超平面。

为此,将约束函数的定义重新也回到函数距离F的应用上,将F的定义改写成g:
g = y i ( w ⋅ x i + b ) ≥ 1 g=y_{i}(w \cdot x_{i}+b)\geq1 g=yi(w⋅xi+b)≥1

或者:
g = y i ( w ⋅ x i + b ) − 1 ≥ 0 g=y_{i}(w \cdot x_{i}+b)-1\geq0 g=yi(w⋅xi+b)−1≥0

g就是约束函数。

在此基础上,构造拉格朗日函数:
L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 m α i [ y i ( w ⋅ x i + b ) − 1 ] L(w,b,\alpha)=\frac{1}{2}{\left\|w\right\|}^2-\sum_{i=1}^{m}\alpha_{i}[y_{i}(w\cdot x_{i}+b)-1] L(w,b,α)=21∥w∥2−i=1∑mαi[yi(w⋅xi+b)−1]上式使用了自动求和符号,这是因为拉格朗日函数需要感知每一个约束条件,只有每个约束条件都满足,才能获得真正的最优解。

这里的每个约束条件都分配了单独的因子 α i \alpha_{i} αi。

总结

学习了SVM算法中的拉格朗日函数构造方法。

相关推荐
蓝桉~MLGT6 分钟前
Python学习历程——字符串相关操作及正则表达式
python·学习·正则表达式
一晌小贪欢6 分钟前
Python爬虫第5课:正则表达式与数据清洗技术
爬虫·python·正则表达式·网络爬虫·python爬虫·python3·网页爬虫
桃子叔叔9 分钟前
从0到1讲解大模型中的关键步骤(一)分词、词性标注、命名实体识别
人工智能·大模型·多模态
程序猿Eason17 分钟前
U587038 背包 题解
c++·算法·动态规划
ARM+FPGA+AI工业主板定制专家27 分钟前
【JETSON+FPGA+GMSL】实测分享 | 如何实现激光雷达与摄像头高精度时间同步?
人工智能·数码相机·机器学习·fpga开发·机器人·自动驾驶
Nina_71727 分钟前
Google提示词白皮书总结(2)
人工智能·python
potato_may30 分钟前
第18讲:C语言内存函数
c语言·数据结构·算法
fakerth31 分钟前
【OpenHarmony】AI引擎模块架构
人工智能·架构·openharmony
Lynnxiaowen32 分钟前
今天我们继续学习python3编程之python基础
linux·运维·python·学习
综合热讯37 分钟前
湖南粒界教育科技有限公司:专注影视技能培养,AI辅助教学提升学员就业竞争力
人工智能·科技