halcon处理灰度能量图

使用halcon处理射线图像,对高能区域和低能区域分割处理感兴趣区域,筛选区域下的灰度值区间范围。

图像灰度值为16位深度图。

python 复制代码
* 读取灰度图像
read_image (Image, '/123.tif')

*

* 获取图像尺寸
get_image_size (Image, Width, Height)

* 分割图像为左右两部分(高能量和低能量区域)
gen_rectangle1 (LeftROI, 0, 0, Height-1, Width/2-1)
gen_rectangle1 (RightROI, 0, Width/2, Height-1, Width-1)

* 提取左右区域图像
reduce_domain (Image, LeftROI, LeftImage)
reduce_domain (Image, RightROI, RightImage)

* 预处理 - 增强对比度
emphasize (LeftImage, LeftEnhanced, 7, 7, 1.0)
emphasize (RightImage, RightEnhanced, 7, 7, 1.0)

* 中值滤波去噪
median_image (LeftEnhanced, LeftFiltered, 'circle', 2, 'mirrored')
median_image (RightEnhanced, RightFiltered, 'circle', 2, 'mirrored')

* 阈值分割提取矿石区域
threshold (LeftFiltered, LeftRegions, 50, 43055)
threshold (RightFiltered, RightRegions, 50, 43055)

* 形态学处理去除小噪点
connection (LeftRegions, LeftConnected)
connection (RightRegions, RightConnected)
select_shape (LeftConnected, LeftOres, 'area', 'and', 500, 9999999)
select_shape (RightConnected, RightOres, 'area', 'and', 500, 9999999)

* 计算每个矿石区域的灰度特征
* 高能量矿石区域分析
count_obj (LeftOres, NumLeftOres)
for i := 1 to NumLeftOres by 1
    select_obj (LeftOres, SingleOre1, i)
    
    * 计算区域的平均灰度值
    intensity (SingleOre1, LeftFiltered, MeanIntensity1, Deviation1)
     min_max_gray (SingleOre1, LeftFiltered, 0, Min1, Max1, Range1)
    * 根据灰度值分类
    if (MeanIntensity1 > 180)
        Class := 'High-grade ore'
        Color := 'blue'
    elseif (MeanIntensity1 > 120)
        Class := 'Medium-grade ore'
        Color := 'yellow'
    else
        Class := 'Low-grade ore'
        Color := 'red'
    endif
    
    * 获取区域边界框
    smallest_rectangle1 (SingleOre1, Row1, Col1, Row2, Col2)
 
   
       gen_rectangle1 (Rectangle1, Row1, Col1, Row2, Col2)
    * 显示结果
    dev_set_color (Color)
    dev_display (SingleOre1)
    
   
endfor

* 低能量矿石区域分析
count_obj (RightOres, NumRightOres)
for j := 1 to NumRightOres by 1
    select_obj (RightOres, SingleOre2, j)
    
    * 计算区域的平均灰度值
    intensity (SingleOre2, RightFiltered, MeanIntensity2, Deviation2)
    min_max_gray (SingleOre2, RightFiltered, 0, Min2, Max2, Range2)
    * 根据灰度值分类(使用不同的阈值)
    if (MeanIntensity2 > 150)
        Class := 'High-grade ore'
        Color := 'green'
    elseif (MeanIntensity2 > 90)
        Class := 'Medium-grade ore'
        Color := 'yellow'
    else
        Class := 'Low-grade ore'
        Color := 'red'
    endif
    
    * 获取区域边界框
    smallest_rectangle1 (SingleOre2, Row1, Col1, Row2, Col2)
    gen_rectangle1 (Rectangle2, Row1, Col1, Row2, Col2)
    * 显示结果
    dev_set_color (Color)
    dev_display (SingleOre2)
   
endfor

stop()
相关推荐
音视频牛哥12 小时前
从“小而美”到“大而强”:音视频直播SDK的技术进化逻辑
机器学习·计算机视觉·音视频·大牛直播sdk·人工智能+·rtsp播放器rtmp播放器·rtmp同屏推流
玄月三初13 小时前
超算互联网平台配置老一点的mmsegmentation环境
人工智能·计算机视觉·语义分割
CoovallyAIHub14 小时前
Mamba-3震撼登场!Transformer最强挑战者再进化,已进入ICLR 2026盲审
深度学习·算法·计算机视觉
Antonio91515 小时前
【图像处理】常见图像插值算法与应用
图像处理·算法·计算机视觉
CV实验室1 天前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
应用市场1 天前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
CoookeCola1 天前
MovieNet(A holistic dataset for movie understanding) :面向电影理解的多模态综合数据集与工具链
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
应用市场1 天前
OpenCV进阶:图像变换、增强与特征检测实战
人工智能·opencv·计算机视觉
lingchen19061 天前
卷积神经网络中的卷积运算原理
深度学习·计算机视觉·cnn
灵遁者书籍作品1 天前
语言的拓扑学约束公理:语言对实在的描述具有拓扑不变量——某些真理必须通过悖论、沉默或隐喻表达
人工智能·计算机视觉