opencv图像基本操作解析与实操

图片操作

cv2.namedWindow() 创建命名窗口

cv2.imshow()显示窗口

cv2.destroyAllwindws()摧毁窗口

cv2.resizeWindow()改变窗口大小

cv2.waitKey()等待用户输入

cv2.imread()读取图像

img.shape 图片h、w、c(高、宽、通道数

python 复制代码
import cv2    # opencv读取的格式是BGR
import matplotlib.pyplot as plt
import numpy as np

# cv2.IMREAD_COLOR 彩色图像
# cv2.IMREAD_GRAYSCALE 灰度图像
img = cv2.imread('img1.jpg',cv2.IMREAD_COLOR)

# 图像显示
cv2.imshow('img1',img)
# 等待时间,毫秒级,0表示任意键中止
cv2.waitKey(0)
cv2.destroyAllWindows()

视频操作

cv2.VideoCapture() 可以捕获摄像头,用数字来控制不同的设备,例如0,1

如果是视频文件,直接指定好路径即可。

python 复制代码
vc = cv2.VideoCapture('video1.mp4')
# 检查是否打开正确
if vc.isOpened():
    open,frame = vc.read() # 每次读取1帧,再read再读取下一帧
                           # 返回的第一个值是bool类型,第二个值是当前这一帧的图像(三维数组)
else:
    open = False
# 通常情况下
while open:
    ret,frame = vc.read()
    if frame is None:
        break
    if ret == True:
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # cv2.cvtColor(图像,转换方法)
        cv2.imshow('result',gray)
        if cv2.waitKey(10) & 0xFF == 27: # 27是esc键
            break
vc.release()
cv2.destroyAllWindows()

ROI

Region Of Interest 直译为:感兴趣的区域

作用为:截取部分图像数据

python 复制代码
# ROI
img = cv2.imread('img1.jpg')
if img is not None:
    img_partA = img[0:200,0:200] # ROI操作,img[h,w]
                                 # 本质是操作数组
    cv2.imshow('img1',img_partA)
    cv2.imshow('img2',img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

颜色通道提取

python 复制代码
b,g,r = cv2.split(img) # 提取bgr
img = cv2.merge(b,g,r) # 通过bgr组合出一张图像

只保留R通道显示

python 复制代码
img = cv2.imread("img1.jpg",cv2.IMREAD_COLOR)
b,g,r = cv2.split(img)
# 只保留R   [h,w,c] c表示通道,根据bgr索引,b为0,g为1,r为2
cur_img = img.copy()
cur_img[:,:,0] = 0  # b通道清零
cur_img[:,:,1] = 0  # g通道清零
cv2.imshow("cur_img",cur_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

只保留G通道显示

python 复制代码
img = cv2.imread("img1.jpg",cv2.IMREAD_COLOR)
b,g,r = cv2.split(img)
# 只保留R   [h,w,c] c表示通道,根据bgr索引,b为0,g为1,r为2
cur_img = img.copy()
cur_img[:,:,0] = 0  # b通道清零
cur_img[:,:,2] = 0  # r通道清零
cv2.imshow("cur_img",cur_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

只保留B通道显示

python 复制代码
img = cv2.imread("img1.jpg",cv2.IMREAD_COLOR)
b,g,r = cv2.split(img)
# 只保留R   [h,w,c] c表示通道,根据bgr索引,b为0,g为1,r为2
cur_img = img.copy()
cur_img[:,:,1] = 0  # g通道清零
cur_img[:,:,2] = 0  # r通道清零
cv2.imshow("cur_img",cur_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

边界填充

python 复制代码
img = cv2.imread("img1.jpg",cv2.IMREAD_COLOR)
top_size,bottom_size,left_size,right_size = (50,50,50,50)

# cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType) borderType为边界填充类型
replicate = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType=cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType=cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType=cv2.BORDER_REFLECT101)
wrap = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType=cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType=cv2.BORDER_CONSTANT,value=0)

数值计算

python 复制代码
# 部分数值计算(如图像融合)前提需要两图像shape值相同
img1 = cv2.imread("img1.jpg",cv2.IMREAD_COLOR)
img2 = cv2.imread("img2.jpg",cv2.IMREAD_COLOR)
img3 = img1 + 10    # 相当于3个通道中每一个像素数值都加10
img4 = img1 + img2  # 两张图像中每个像素的rgb三通道数值相加,
                    # 以rgb888为例,如果一个像素的r相加后>255,则该数值等于相加后%255
img5 = cv2.add(img1,img2) # 两张图rgb相加,如果>255,则取最大值255

图像融合

python 复制代码
# 图像融合前提需要两图像shape值相同
img1 = cv2.imread("img1.jpg",cv2.IMREAD_COLOR)
img2 = cv2.imread("img2.jpg",cv2.IMREAD_COLOR)

# cv2.addWeighted(img1,img1权重,img2,img2权重,偏置项(整体提亮多少))
h2 = img2.shape[0]
w2 = img2.shape[1]
img1_new = cv2.resize(img1,(w2,h2))
res = cv2.addWeighted(img1_new,0.4,img2,0.6,0)
cv2.imshow('res',res)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
_codemonster1 小时前
深度学习实战(基于pytroch)系列(十五)模型构造
人工智能·深度学习
海域云赵从友2 小时前
2025年印尼服务器选型指南:跨境业务落地的合规与性能双解
人工智能·git·github
用户5191495848452 小时前
cURL变量管理中的缓冲区越界读取漏洞分析
人工智能·aigc
iFlow_AI3 小时前
增强AI编程助手效能:使用开源Litho(deepwiki-rs)深度上下文赋能iFlow
人工智能·ai·ai编程·命令模式·iflow·iflow cli·心流ai助手
AI街潜水的八角3 小时前
深度学习杂草分割系统1:数据集说明(含下载链接)
人工智能·深度学习·分类
TG:@yunlaoda360 云老大3 小时前
谷歌云发布 Document AI Workbench 最新功能:自定义文档拆分器实现复杂文档处理自动化
运维·人工智能·自动化·googlecloud
苍何3 小时前
国内也有 GPT 质感的 App 了,阿里做到了。
人工智能
美团技术团队3 小时前
美团 LongCat 团队发布全模态一站式评测基准UNO-Bench
人工智能
top_designer3 小时前
Firefly 样式参考:AI 驱动的 UI 资产“无限”生成
前端·人工智能·ui·aigc·ux·设计师
强盛小灵通专卖员4 小时前
Airsim仿真、无人机、无人车、Lidar深度相机应用研究!
人工智能·无人机·sci·深度强化学习·airsim·小论文