Sequential 损失函数 反向传播 优化器 模型的使用修改保存加载

Sequential & example1

感觉和compose()好像

串联起来 方便调用

python 复制代码
def __init()__(self):
    super(Net,self).__init__()
    self.model1 = Sequential(
        Conv2d(3,32,5,padding=2),
        MaxPool2d(2),
        Conv2d(32,32,5,padding=2),
        MaxPool2d(2),
        Conv2d(32,64,5,padding=2),
        MaxPool2d(2),
        Flatten(),
        Linear(1024,64),
        Linear(64,10)
    )
    
def forward(self,x):
    x = self.model1(x)
    return x

可以输出graph查看:

python 复制代码
writer = SummaryWriter('../logs')
writer.add_graph(net,input)
writer.close()

终于明白好多论文上的图是怎么来的了 好权威啊

完整版代码:

code:

python 复制代码
import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter


class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self,x):
        x = self.model1(x)
        return x

net = Net()
print(net)
input = torch.ones((64,3,32,32))
output = net(input)
print(output.shape)

writer = SummaryWriter('../logs')
writer.add_graph(net,input)
writer.close()
损失函数 反向传播

损失函数:

python 复制代码
import torch
from torch import float32
from torch.nn import L1Loss
from torch import nn

inputs = torch.tensor([1,2,3],dtype=float32)
targets = torch.tensor([1,2,5],dtype=float32)

inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))

loss = L1Loss()
result = loss(inputs,targets)
print(result)

loss = nn.MSELoss()
result = loss(inputs,targets)
print(result)

x = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,(1,3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)

损失函数例子+反向传播(更新参数)

python 复制代码
import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torchvision.datasets import ImageFolder

#数据预处理
transform = transforms.Compose([
    transforms.Resize((32,32)),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.5,0.5,0.5],
        std = [0.5,0.5,0.5]
    )
])

#加载数据集
folder_path = '../images'
dataset = ImageFolder(folder_path,transform=transform)
dataloader = DataLoader(dataset,batch_size=1)

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self,x):
        x = self.model1(x)
        return x

net = Net()
loss = nn.CrossEntropyLoss()

for data in dataloader:
    img,label = data
    print(img.shape)
    output = net(img)
    result_loss = loss(output,label)
    print(result_loss)
    result_loss.backward()
优化器

随机梯度下降SGD

python 复制代码
import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torchvision.datasets import ImageFolder

#数据预处理
transform = transforms.Compose([
    transforms.Resize((32,32)),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.5,0.5,0.5],
        std = [0.5,0.5,0.5]
    )
])

#加载数据集
folder_path = '../images'
dataset = ImageFolder(folder_path,transform=transform)
dataloader = DataLoader(dataset,batch_size=1)

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self,x):
        x = self.model1(x)
        return x

net = Net()
loss = nn.CrossEntropyLoss()
optim = torch.optim.SGD(net.parameters(),lr=0.01)
for epoch in range(10):
    running_loss = 0.0
    for data in dataloader:
        img, label = data
        output = net(img)
        result_loss = loss(output, label)
        optim.zero_grad()
        result_loss.backward()
        optim.step()
        #每次训练数据的损失和
        running_loss += result_loss
    print(running_loss)
现有模型的使用和修改

maybe可以称为迁移学习???

example net: vgg16

python 复制代码
#不预训练
vgg16_false = torchvision.models.vgg16(pretrained=False)
#预训练
vgg16_true = torchvision.models.vgg16(pretrained=True)

print(vgg16_true)

#添加一个模块 在vgg16的classifier里面加一个
vgg16_true.classifier.add_module('add_linear',nn.Linear(1000,10))
#修改模块中的数据
vgg16_false.classifier[6] = nn.Linear(4096,10)
模型保存和加载
  1. 现有模型:vgg16

    python 复制代码
    vgg16 = torchvision.models.vgg16(pretrained=False)
    python 复制代码
    #保存:模型结构+参数
    torch.save(vgg16,"vgg16_method1.pth")
    #加载:
    model = torch.load("vgg16_method1.pth")
    python 复制代码
    #保存:模型参数(官推)
    #保存成字典模式
    torch.save(vgg16.state_dict(),"vgg16_method2.pth")
    #加载
    vgg16 = torchvision.models.vgg16(pretrained=False)
    vgg16.load_state_dict(torch.load("vgg16_method2.pth"))
  2. 自定义模型

    python 复制代码
    #保存
    class Net(nn.Module):
        ...
        ...
    net = Net()
    torch.save(net,"net.pth")
    python 复制代码
    #加载
    class Net(nn.Module):
        ...
        ...
    model = torch.load("net.pth")
相关推荐
Coder_Boy_6 分钟前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱2 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º4 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
寻星探路4 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
Codebee6 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º6 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys6 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56786 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子6 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder7 小时前
hot100-二叉树I
数据结构·python·算法·二叉树