Sequential 损失函数 反向传播 优化器 模型的使用修改保存加载

Sequential & example1

感觉和compose()好像

串联起来 方便调用

python 复制代码
def __init()__(self):
    super(Net,self).__init__()
    self.model1 = Sequential(
        Conv2d(3,32,5,padding=2),
        MaxPool2d(2),
        Conv2d(32,32,5,padding=2),
        MaxPool2d(2),
        Conv2d(32,64,5,padding=2),
        MaxPool2d(2),
        Flatten(),
        Linear(1024,64),
        Linear(64,10)
    )
    
def forward(self,x):
    x = self.model1(x)
    return x

可以输出graph查看:

python 复制代码
writer = SummaryWriter('../logs')
writer.add_graph(net,input)
writer.close()

终于明白好多论文上的图是怎么来的了 好权威啊

完整版代码:

code:

python 复制代码
import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter


class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self,x):
        x = self.model1(x)
        return x

net = Net()
print(net)
input = torch.ones((64,3,32,32))
output = net(input)
print(output.shape)

writer = SummaryWriter('../logs')
writer.add_graph(net,input)
writer.close()
损失函数 反向传播

损失函数:

python 复制代码
import torch
from torch import float32
from torch.nn import L1Loss
from torch import nn

inputs = torch.tensor([1,2,3],dtype=float32)
targets = torch.tensor([1,2,5],dtype=float32)

inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))

loss = L1Loss()
result = loss(inputs,targets)
print(result)

loss = nn.MSELoss()
result = loss(inputs,targets)
print(result)

x = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,(1,3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)

损失函数例子+反向传播(更新参数)

python 复制代码
import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torchvision.datasets import ImageFolder

#数据预处理
transform = transforms.Compose([
    transforms.Resize((32,32)),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.5,0.5,0.5],
        std = [0.5,0.5,0.5]
    )
])

#加载数据集
folder_path = '../images'
dataset = ImageFolder(folder_path,transform=transform)
dataloader = DataLoader(dataset,batch_size=1)

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self,x):
        x = self.model1(x)
        return x

net = Net()
loss = nn.CrossEntropyLoss()

for data in dataloader:
    img,label = data
    print(img.shape)
    output = net(img)
    result_loss = loss(output,label)
    print(result_loss)
    result_loss.backward()
优化器

随机梯度下降SGD

python 复制代码
import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torchvision.datasets import ImageFolder

#数据预处理
transform = transforms.Compose([
    transforms.Resize((32,32)),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.5,0.5,0.5],
        std = [0.5,0.5,0.5]
    )
])

#加载数据集
folder_path = '../images'
dataset = ImageFolder(folder_path,transform=transform)
dataloader = DataLoader(dataset,batch_size=1)

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self,x):
        x = self.model1(x)
        return x

net = Net()
loss = nn.CrossEntropyLoss()
optim = torch.optim.SGD(net.parameters(),lr=0.01)
for epoch in range(10):
    running_loss = 0.0
    for data in dataloader:
        img, label = data
        output = net(img)
        result_loss = loss(output, label)
        optim.zero_grad()
        result_loss.backward()
        optim.step()
        #每次训练数据的损失和
        running_loss += result_loss
    print(running_loss)
现有模型的使用和修改

maybe可以称为迁移学习???

example net: vgg16

python 复制代码
#不预训练
vgg16_false = torchvision.models.vgg16(pretrained=False)
#预训练
vgg16_true = torchvision.models.vgg16(pretrained=True)

print(vgg16_true)

#添加一个模块 在vgg16的classifier里面加一个
vgg16_true.classifier.add_module('add_linear',nn.Linear(1000,10))
#修改模块中的数据
vgg16_false.classifier[6] = nn.Linear(4096,10)
模型保存和加载
  1. 现有模型:vgg16

    python 复制代码
    vgg16 = torchvision.models.vgg16(pretrained=False)
    python 复制代码
    #保存:模型结构+参数
    torch.save(vgg16,"vgg16_method1.pth")
    #加载:
    model = torch.load("vgg16_method1.pth")
    python 复制代码
    #保存:模型参数(官推)
    #保存成字典模式
    torch.save(vgg16.state_dict(),"vgg16_method2.pth")
    #加载
    vgg16 = torchvision.models.vgg16(pretrained=False)
    vgg16.load_state_dict(torch.load("vgg16_method2.pth"))
  2. 自定义模型

    python 复制代码
    #保存
    class Net(nn.Module):
        ...
        ...
    net = Net()
    torch.save(net,"net.pth")
    python 复制代码
    #加载
    class Net(nn.Module):
        ...
        ...
    model = torch.load("net.pth")
相关推荐
yanxing.D19 分钟前
penCV轻松入门_面向python(第七章 图像平滑处理)
图像处理·人工智能·opencv·计算机视觉
新子y36 分钟前
【小白笔记】「while」在程序语言中的角色
笔记·python
骥龙42 分钟前
1.1、开篇:AI如何重塑网络安全攻防格局?
人工智能·安全·web安全
微学AI44 分钟前
国产数据库替代MongoDB的技术实践过程:金仓多模数据库在电子证照系统中的深度应用
数据库·人工智能·1024程序员节
java1234_小锋1 小时前
[免费]基于Python的YOLO深度学习垃圾分类目标检测系统【论文+源码】
python·深度学习·yolo·垃圾分类·垃圾分类检测
gddkxc1 小时前
AI驱动的客户管理:悟空AI CRM的核心功能与优势
人工智能
凌晨一点的秃头猪1 小时前
面向对象和面向过程 编程思想
python
sensen_kiss2 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.2 监督学习模型:感知器(Perceptron)
神经网络·学习·机器学习
总有刁民想爱朕ha2 小时前
银河麒麟v10批量部署Python Flask项目小白教程
开发语言·python·flask·银河麒麟v10