ModelWhale+数据分析 消费者行为数据分析实战

如果你是数据分析的初学者,那么本文将带你实战体验数据分析案例,本文是基于某综合型电商平台及其线下门店的3900条购物交易数据,我将会从用户画像、商品偏好、季节性趋势、地区分布等多个维度进行数据分析,掌握数据分析基本可视化方法!

数据背景介绍

数据的来源是一家综合型电商平台以及其线下门店的交易记录,是比较真实的数据很有参考价值,同时数据集一共包含了15个关键属性,特征也足够多,这里我贴出数据来源地址

数据来源地址:https://www.heywhale.com/mw/dataset/684d56eb84f1ba451bfcd699

数据分析实战

数据加载与预处理

数据分析一开始除了导入必要的依赖,就是数据处理阶段最为重要,我这里主要是去除金额字段中的空格、检查缺失值和日期格式转换

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib
matplotlib.use('TkAgg')

df = pd.read_csv('shopping_trends.csv')
print(df.head())
print(df.info())
df['Purchase Amount '] = df['Purchase Amount '].str.strip().astype(float)
df['Date'] = pd.to_datetime(df['Date'], format='%Y/%m/%d')
print(df.isnull().sum())

用户画像分析

年龄分布

作为实战部分,我将通过直方图分析顾客的年龄分布

python 复制代码
plt.figure(figsize=(8,4))
sns.histplot(df['Age'], bins=20, kde=True, color='skyblue')
plt.title('顾客年龄分布')
plt.xlabel('年龄')
plt.ylabel('人数')
plt.show()

性别分布

性别分布则显示本数据集中顾客均为男性,说明数据采集或平台定位偏向男性用户,这也是通过可视化得到的

python 复制代码
sns.countplot(x='Gender', data=df, palette='Set2')
plt.title('顾客性别分布')
plt.show()

商品偏好分析

商品类别分布

从商品偏好的角度分析商品类别分布,发现服装和配饰为最受欢迎的商品类别,也就是绿色和黄色的柱状图

python 复制代码
plt.figure(figsize=(10,4))
sns.countplot(x='Category', data=df, order=df['Category'].value_counts().index, palette='Set3')
plt.title('商品类别分布')
plt.xlabel('类别')
plt.ylabel('购买次数')
plt.show()

热销商品TOP10

条形图展示热销商品的前十名

python 复制代码
top_items = df['Item Purchased'].value_counts().head(10)
top_items.plot(kind='bar', color='coral')
plt.title('热销商品TOP10')
plt.ylabel('购买次数')
plt.show()

季节性与地区趋势

不同季节的销售额

分析不同季节的销售额,这对于企业来讲尤为重要,可以在这两个季节加大促销力度,提高整体收入

python 复制代码
season_sales = df.groupby('Season')['Purchase Amount '].sum().sort_values()
season_sales.plot(kind='bar', color='teal')
plt.title('不同季节销售额')
plt.ylabel('总销售额')
plt.show()

地区分布

条形图展示购买量最多的地区前十名,发现广东,江苏,浙江是前三购买量多的地区

python 复制代码
top_locations = df['Location'].value_counts().head(10)
top_locations.plot(kind='bar', color='slateblue')
plt.title('购买量最多的地区TOP10')
plt.ylabel('购买次数')
plt.show()

价格与评价分析

价格分布

分析不同类别商品的价格分布,发现外套和鞋类价格较高,配饰类价格波动大

python 复制代码
plt.figure(figsize=(8,4))
sns.boxplot(x='Category', y='Purchase Amount ', data=df, palette='Pastel1')
plt.title('不同类别商品价格分布')
plt.ylabel('购买金额')
plt.show()

评价分布

直方图分析顾客的评价分布,总体评价还可以

python 复制代码
plt.figure(figsize=(8,4))
sns.histplot(df['Review Rating'], bins=20, kde=True, color='lightgreen')
plt.title('顾客评价分布')
plt.xlabel('评价评分')
plt.ylabel('人数')
plt.show()

高级数据分析方法

除了基础的数据分析方法,下面介绍一个高级方法,在实战之前,可以先来了解一下聚类方法的定义

  • 聚类分析是一种无监督学习方法,用于将数据集中的对象分成多个组(或簇),使得同一组中的对象在某种意义上更相似,而不同组中的对象差异更大

聚类分析

聚类分析,我们可以识别顾客群体的自然分组,帮助企业进行精准营销

python 复制代码
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA

scaler = StandardScaler()
scaled_data = scaler.fit_transform(df[['Age', 'Purchase Amount ']])

# K-means聚类
kmeans = KMeans(n_clusters=3, random_state=42)
df['Cluster'] = kmeans.fit_predict(scaled_data)

# PCA降维
pca = PCA(n_components=2)
pca_data = pca.fit_transform(scaled_data)

plt.scatter(pca_data[:, 0], pca_data[:, 1], c=df['Cluster'], cmap='viridis')
plt.title('顾客聚类结果')
plt.xlabel('PCA1')
plt.ylabel('PCA2')
plt.show()

总结

对于初学者而言,如果你掌握了本次数据分析小案例,你就可以在日后的数据分析学习里轻松许多,当然仅仅这点知识还是远远不够的,数据分析更多的还是在数据里挑出你认为重要的特征,并通过匹配的可视化图,最终得到一份详细准确的报告。这才是最终目标~

相关推荐
Lun3866buzha2 小时前
手机类型识别与分类_功能手机_折叠手机_滑盖手机_智能手机检测方法
智能手机·分类·数据挖掘
Lun3866buzha2 小时前
轮胎胎面花纹识别与分类:基于solo_r50_fpn模型的实现与优化
人工智能·分类·数据挖掘
Lun3866buzha3 小时前
基于FCOS和HRNet的易拉罐缺陷检测与分类系统:实现工业质检自动化,提升检测精度与效率_1
分类·数据挖掘·自动化
沐墨染3 小时前
敏感词智能检索前端组件设计:树形组织过滤与多维数据分析
前端·javascript·vue.js·ui·数据挖掘·数据分析
YangYang9YangYan4 小时前
2026大专计算机专业学数据分析的实用性与前景分析
数据挖掘·数据分析
海天一色y4 小时前
基于Resnet50预训练模型实现CIFAR-10数据集的分类任务
人工智能·分类·数据挖掘
Carl_奕然14 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
数据智研18 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
UrbanJazzerati18 小时前
解码数据分布:茎叶图和箱形图初学者指南
面试·数据分析
少林码僧19 小时前
2.29 XGBoost、LightGBM、CatBoost对比:三大梯度提升框架选型指南
人工智能·机器学习·ai·数据挖掘·数据分析·回归