MIT线性代数02_矩阵消元

1. Elimination

pivot 主元

121381041\]−\>\[12102−2041\]−\>\[12102−2005\] \\begin{bmatrix} 1 \& 2 \& 1\\\\ 3 \& 8 \& 1\\\\ 0 \& 4 \& 1\\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \\\\ 0 \& 2 \& -2 \\\\ 0 \& 4 \& 1 \\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \\\\ 0 \& 2 \& -2\\\\ 0 \& 0 \& 5\\\\ \\end{bmatrix} 130284111 −\> 1002241−21 −\> 1002201−25 ## 2. Back-substitution augumented matrix 增广矩阵 \[1212381120412\]−\>\[121202−260412\]−\>\[121202−26005−10\] \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\\\ 3 \& 8 \& 1 \& 12 \\\\ 0 \& 4 \& 1 \& 2 \\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \& 2\\\\ 0 \& 2 \& -2 \& 6\\\\ 0 \& 4 \& 1 \& 2\\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\\\ 0 \& 2 \& -2\& 6 \\\\ 0 \& 0 \& 5 \& -10\\\\ \\end{bmatrix} 1302841112122 −\> 1002241−21262 −\> 1002201−2526−10 ## 3. Elimination matrices * identity matrix 单位矩阵 * elementary matrix 初等矩阵 * associative law 结合律 * par·en·thesis n. /pəˈrenθəsɪs/= bracket * permutation matrix 置换矩阵 * Inverse ### Step 1: Matries: subtract 3 x row1 from row2 $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ -3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} ## \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 3 \& 8 \& 1 \& 12 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} $$ ### Step 2: Subtract 2 x row2 from row3 ## $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \\ 0 \& -2\& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 0 \& 5 \& -10 \\ \\end{bmatrix} $$ E32(E21A)=U(E32E21)A=U E_{32} (E_{21} A) = U \\\\ (E_{32} E_{21}) A = U E32(E21A)=U(E32E21)A=U ## 4. Matrix Multiplication 矩阵乘以一个列向量,相当于矩阵的列的线性组合。 一个行向量乘以一个矩阵,相当于矩阵的行的线性组合。 ### Permutation Exchange row1 and row2 $$ \\begin{bmatrix} 0 \& 1 \\ 1 \& 0 \\ \\end{bmatrix} ## \\begin{bmatrix} a \& b \\ c \& d \\ \\end{bmatrix} \\begin{bmatrix} c \& d \\ a \& b \\ \\end{bmatrix} $$ $$ \\begin{bmatrix} a \& b \\ c \& d \\ \\end{bmatrix} ## \\begin{bmatrix} 0 \& 1 \\ 1 \& 0 \\ \\end{bmatrix} \\begin{bmatrix} b \& a \\ d \& c \\ \\end{bmatrix} $$ ### Inverses ## $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ 3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 0 \& 0 \\ -3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} $$

相关推荐
triticale4 小时前
线性代数 下
线性代数
triticale6 小时前
线性代数 上
线性代数
石去皿16 小时前
QKV 为什么是三个矩阵?注意力为何要除以 √d?多头注意力到底有啥用?
人工智能·线性代数·机器学习·矩阵
18538162800于2 天前
批量剪辑矩阵分发系统源码搭建,支持OEM
线性代数·矩阵
点云SLAM2 天前
矩阵中QR算法分解简介和基于Eigen库使用示例
人工智能·线性代数·算法·矩阵·slam·qr矩阵分解算法·数值线性代数
幻风_huanfeng4 天前
人工智能之数学基础:概率论和数理统计在机器学习的地位
人工智能·神经网络·线性代数·机器学习·概率论
张晓~183399481214 天前
如果通过源码技术实现矩阵系统分部门管理?
jvm·数据库·线性代数·算法·microsoft·矩阵·html5
熬了夜的程序员5 天前
【华为机试】240. 搜索二维矩阵 II
线性代数·算法·华为·面试·矩阵·golang·深度优先
AIminminHu6 天前
数字图像处理(四:图像如果当作矩阵,那加减乘除处理了矩阵,那图像咋变):从LED冬奥会、奥运会及春晚等等大屏,到手机小屏,快来挖一挖里面都有什么
线性代数·智能手机·矩阵