MIT线性代数02_矩阵消元

1. Elimination

pivot 主元

121381041\]−\>\[12102−2041\]−\>\[12102−2005\] \\begin{bmatrix} 1 \& 2 \& 1\\\\ 3 \& 8 \& 1\\\\ 0 \& 4 \& 1\\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \\\\ 0 \& 2 \& -2 \\\\ 0 \& 4 \& 1 \\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \\\\ 0 \& 2 \& -2\\\\ 0 \& 0 \& 5\\\\ \\end{bmatrix} 130284111 −\> 1002241−21 −\> 1002201−25 ## 2. Back-substitution augumented matrix 增广矩阵 \[1212381120412\]−\>\[121202−260412\]−\>\[121202−26005−10\] \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\\\ 3 \& 8 \& 1 \& 12 \\\\ 0 \& 4 \& 1 \& 2 \\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \& 2\\\\ 0 \& 2 \& -2 \& 6\\\\ 0 \& 4 \& 1 \& 2\\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\\\ 0 \& 2 \& -2\& 6 \\\\ 0 \& 0 \& 5 \& -10\\\\ \\end{bmatrix} 1302841112122 −\> 1002241−21262 −\> 1002201−2526−10 ## 3. Elimination matrices * identity matrix 单位矩阵 * elementary matrix 初等矩阵 * associative law 结合律 * par·en·thesis n. /pəˈrenθəsɪs/= bracket * permutation matrix 置换矩阵 * Inverse ### Step 1: Matries: subtract 3 x row1 from row2 $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ -3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} ## \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 3 \& 8 \& 1 \& 12 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} $$ ### Step 2: Subtract 2 x row2 from row3 ## $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \\ 0 \& -2\& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 0 \& 5 \& -10 \\ \\end{bmatrix} $$ E32(E21A)=U(E32E21)A=U E_{32} (E_{21} A) = U \\\\ (E_{32} E_{21}) A = U E32(E21A)=U(E32E21)A=U ## 4. Matrix Multiplication 矩阵乘以一个列向量,相当于矩阵的列的线性组合。 一个行向量乘以一个矩阵,相当于矩阵的行的线性组合。 ### Permutation Exchange row1 and row2 $$ \\begin{bmatrix} 0 \& 1 \\ 1 \& 0 \\ \\end{bmatrix} ## \\begin{bmatrix} a \& b \\ c \& d \\ \\end{bmatrix} \\begin{bmatrix} c \& d \\ a \& b \\ \\end{bmatrix} $$ $$ \\begin{bmatrix} a \& b \\ c \& d \\ \\end{bmatrix} ## \\begin{bmatrix} 0 \& 1 \\ 1 \& 0 \\ \\end{bmatrix} \\begin{bmatrix} b \& a \\ d \& c \\ \\end{bmatrix} $$ ### Inverses ## $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ 3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 0 \& 0 \\ -3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} $$

相关推荐
一碗姜汤2 小时前
【统计基础】卡尔曼滤波,矩阵对迹求导,Joseph Form,条件数
线性代数·矩阵
sunfove3 小时前
麦克斯韦方程组 (Maxwell‘s Equations) 的完整推导
线性代数·算法·矩阵
ComputerInBook4 小时前
代数学基本概念理解——幺正矩阵(Unitary matrix)(酉矩阵?)
线性代数·矩阵·正交矩阵·幺正矩阵·酉矩阵
AI科技星7 小时前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
一碗姜汤7 小时前
【统计基础】从线性代数的直观角度理解SVD奇异值分解
线性代数
好奇龙猫7 小时前
【大学院-筆記試験練習:线性代数和数据结构(5)】
数据结构·线性代数
愚公搬代码1 天前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
paixingbang1 天前
2026短视频矩阵服务商评测报告 星链引擎、河南云罗、数阶智能
大数据·线性代数·矩阵
scott1985121 天前
NVIDIA GPU内部结构:高性能矩阵乘法内核剖析
线性代数·矩阵·gpu·nvidia·cuda
AI科技星1 天前
能量绝对性与几何本源:统一场论能量方程的第一性原理推导、验证与范式革命
服务器·人工智能·科技·线性代数·算法·机器学习·生活