MIT线性代数02_矩阵消元

1. Elimination

pivot 主元

121381041\]−\>\[12102−2041\]−\>\[12102−2005\] \\begin{bmatrix} 1 \& 2 \& 1\\\\ 3 \& 8 \& 1\\\\ 0 \& 4 \& 1\\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \\\\ 0 \& 2 \& -2 \\\\ 0 \& 4 \& 1 \\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \\\\ 0 \& 2 \& -2\\\\ 0 \& 0 \& 5\\\\ \\end{bmatrix} 130284111 −\> 1002241−21 −\> 1002201−25 ## 2. Back-substitution augumented matrix 增广矩阵 \[1212381120412\]−\>\[121202−260412\]−\>\[121202−26005−10\] \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\\\ 3 \& 8 \& 1 \& 12 \\\\ 0 \& 4 \& 1 \& 2 \\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \& 2\\\\ 0 \& 2 \& -2 \& 6\\\\ 0 \& 4 \& 1 \& 2\\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\\\ 0 \& 2 \& -2\& 6 \\\\ 0 \& 0 \& 5 \& -10\\\\ \\end{bmatrix} 1302841112122 −\> 1002241−21262 −\> 1002201−2526−10 ## 3. Elimination matrices * identity matrix 单位矩阵 * elementary matrix 初等矩阵 * associative law 结合律 * par·en·thesis n. /pəˈrenθəsɪs/= bracket * permutation matrix 置换矩阵 * Inverse ### Step 1: Matries: subtract 3 x row1 from row2 $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ -3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} ## \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 3 \& 8 \& 1 \& 12 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} $$ ### Step 2: Subtract 2 x row2 from row3 ## $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \\ 0 \& -2\& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 0 \& 5 \& -10 \\ \\end{bmatrix} $$ E32(E21A)=U(E32E21)A=U E_{32} (E_{21} A) = U \\\\ (E_{32} E_{21}) A = U E32(E21A)=U(E32E21)A=U ## 4. Matrix Multiplication 矩阵乘以一个列向量,相当于矩阵的列的线性组合。 一个行向量乘以一个矩阵,相当于矩阵的行的线性组合。 ### Permutation Exchange row1 and row2 $$ \\begin{bmatrix} 0 \& 1 \\ 1 \& 0 \\ \\end{bmatrix} ## \\begin{bmatrix} a \& b \\ c \& d \\ \\end{bmatrix} \\begin{bmatrix} c \& d \\ a \& b \\ \\end{bmatrix} $$ $$ \\begin{bmatrix} a \& b \\ c \& d \\ \\end{bmatrix} ## \\begin{bmatrix} 0 \& 1 \\ 1 \& 0 \\ \\end{bmatrix} \\begin{bmatrix} b \& a \\ d \& c \\ \\end{bmatrix} $$ ### Inverses ## $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ 3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 0 \& 0 \\ -3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} $$

相关推荐
dxnb221 天前
Datawhale25年10月组队学习:math for AI+Task2线性代数
人工智能·学习·线性代数
熬了夜的程序员3 天前
【LeetCode】74. 搜索二维矩阵
线性代数·算法·leetcode·职场和发展·矩阵·深度优先·动态规划
点云SLAM3 天前
矩阵奇异值分解算法(SVD)的导数 / 灵敏度分析
人工智能·线性代数·算法·机器学习·矩阵·数据压缩·svd算法
passxgx4 天前
10.5 傅里叶级数:用线性代数研究函数
线性代数
墨染天姬4 天前
【AI】数学基础之矩阵
人工智能·线性代数·矩阵
hour_go4 天前
张量、向量与矩阵:多维世界的数据密码
线性代数·矩阵
大佬,救命!!!4 天前
3多维数组的矩阵乘法
线性代数·矩阵
2501_918126915 天前
用html5写一个可输入1-100行1-100列的矩阵计算器
线性代数·矩阵
lqjun08276 天前
平面的方程公式
线性代数·机器学习·平面
shimly1234566 天前
(done) 矩阵分块计算和分块转置
线性代数·矩阵