MIT线性代数02_矩阵消元

1. Elimination

pivot 主元

121381041\]−\>\[12102−2041\]−\>\[12102−2005\] \\begin{bmatrix} 1 \& 2 \& 1\\\\ 3 \& 8 \& 1\\\\ 0 \& 4 \& 1\\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \\\\ 0 \& 2 \& -2 \\\\ 0 \& 4 \& 1 \\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \\\\ 0 \& 2 \& -2\\\\ 0 \& 0 \& 5\\\\ \\end{bmatrix} 130284111 −\> 1002241−21 −\> 1002201−25 ## 2. Back-substitution augumented matrix 增广矩阵 \[1212381120412\]−\>\[121202−260412\]−\>\[121202−26005−10\] \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\\\ 3 \& 8 \& 1 \& 12 \\\\ 0 \& 4 \& 1 \& 2 \\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \& 2\\\\ 0 \& 2 \& -2 \& 6\\\\ 0 \& 4 \& 1 \& 2\\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\\\ 0 \& 2 \& -2\& 6 \\\\ 0 \& 0 \& 5 \& -10\\\\ \\end{bmatrix} 1302841112122 −\> 1002241−21262 −\> 1002201−2526−10 ## 3. Elimination matrices * identity matrix 单位矩阵 * elementary matrix 初等矩阵 * associative law 结合律 * par·en·thesis n. /pəˈrenθəsɪs/= bracket * permutation matrix 置换矩阵 * Inverse ### Step 1: Matries: subtract 3 x row1 from row2 $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ -3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} ## \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 3 \& 8 \& 1 \& 12 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} $$ ### Step 2: Subtract 2 x row2 from row3 ## $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \\ 0 \& -2\& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 0 \& 5 \& -10 \\ \\end{bmatrix} $$ E32(E21A)=U(E32E21)A=U E_{32} (E_{21} A) = U \\\\ (E_{32} E_{21}) A = U E32(E21A)=U(E32E21)A=U ## 4. Matrix Multiplication 矩阵乘以一个列向量,相当于矩阵的列的线性组合。 一个行向量乘以一个矩阵,相当于矩阵的行的线性组合。 ### Permutation Exchange row1 and row2 $$ \\begin{bmatrix} 0 \& 1 \\ 1 \& 0 \\ \\end{bmatrix} ## \\begin{bmatrix} a \& b \\ c \& d \\ \\end{bmatrix} \\begin{bmatrix} c \& d \\ a \& b \\ \\end{bmatrix} $$ $$ \\begin{bmatrix} a \& b \\ c \& d \\ \\end{bmatrix} ## \\begin{bmatrix} 0 \& 1 \\ 1 \& 0 \\ \\end{bmatrix} \\begin{bmatrix} b \& a \\ d \& c \\ \\end{bmatrix} $$ ### Inverses ## $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ 3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 0 \& 0 \\ -3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} $$

相关推荐
式51611 小时前
线性代数(八)非齐次方程组的解的结构
线性代数·算法·机器学习
式51620 小时前
线性代数(六)列空间和零空间
线性代数
式51621 小时前
线性代数(九)线性相关性、基与维数
线性代数·算法·机器学习
式5161 天前
线性代数(五)向量空间与子空间
人工智能·线性代数·机器学习
式5161 天前
线性代数(七)主变量与特解
线性代数·算法
咚咚王者2 天前
人工智能之数学基础 线性代数:第五章 张量
人工智能·线性代数
醒过来摸鱼3 天前
空间直线方程
线性代数·概率论
测试人社区-小明3 天前
涂鸦板测试指南:从基础功能到用户体验的完整框架
人工智能·opencv·线性代数·微服务·矩阵·架构·ux
hweiyu003 天前
数据结构:矩阵
数据结构·线性代数·矩阵
拉姆哥的小屋3 天前
从400维向量到160000维矩阵:基于深度学习的火焰参数预测系统全解析
开发语言·人工智能·python·深度学习·线性代数·算法·矩阵