MIT线性代数02_矩阵消元

1. Elimination

pivot 主元

121381041\]−\>\[12102−2041\]−\>\[12102−2005\] \\begin{bmatrix} 1 \& 2 \& 1\\\\ 3 \& 8 \& 1\\\\ 0 \& 4 \& 1\\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \\\\ 0 \& 2 \& -2 \\\\ 0 \& 4 \& 1 \\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \\\\ 0 \& 2 \& -2\\\\ 0 \& 0 \& 5\\\\ \\end{bmatrix} 130284111 −\> 1002241−21 −\> 1002201−25 ## 2. Back-substitution augumented matrix 增广矩阵 \[1212381120412\]−\>\[121202−260412\]−\>\[121202−26005−10\] \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\\\ 3 \& 8 \& 1 \& 12 \\\\ 0 \& 4 \& 1 \& 2 \\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \& 2\\\\ 0 \& 2 \& -2 \& 6\\\\ 0 \& 4 \& 1 \& 2\\\\ \\end{bmatrix} -\> \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\\\ 0 \& 2 \& -2\& 6 \\\\ 0 \& 0 \& 5 \& -10\\\\ \\end{bmatrix} 1302841112122 −\> 1002241−21262 −\> 1002201−2526−10 ## 3. Elimination matrices * identity matrix 单位矩阵 * elementary matrix 初等矩阵 * associative law 结合律 * par·en·thesis n. /pəˈrenθəsɪs/= bracket * permutation matrix 置换矩阵 * Inverse ### Step 1: Matries: subtract 3 x row1 from row2 $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ -3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} ## \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 3 \& 8 \& 1 \& 12 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} $$ ### Step 2: Subtract 2 x row2 from row3 ## $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \\ 0 \& -2\& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 4 \& 1 \& 2 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 2 \& 1 \& 2 \\ 0 \& 2 \& -2 \& 6 \\ 0 \& 0 \& 5 \& -10 \\ \\end{bmatrix} $$ E32(E21A)=U(E32E21)A=U E_{32} (E_{21} A) = U \\\\ (E_{32} E_{21}) A = U E32(E21A)=U(E32E21)A=U ## 4. Matrix Multiplication 矩阵乘以一个列向量,相当于矩阵的列的线性组合。 一个行向量乘以一个矩阵,相当于矩阵的行的线性组合。 ### Permutation Exchange row1 and row2 $$ \\begin{bmatrix} 0 \& 1 \\ 1 \& 0 \\ \\end{bmatrix} ## \\begin{bmatrix} a \& b \\ c \& d \\ \\end{bmatrix} \\begin{bmatrix} c \& d \\ a \& b \\ \\end{bmatrix} $$ $$ \\begin{bmatrix} a \& b \\ c \& d \\ \\end{bmatrix} ## \\begin{bmatrix} 0 \& 1 \\ 1 \& 0 \\ \\end{bmatrix} \\begin{bmatrix} b \& a \\ d \& c \\ \\end{bmatrix} $$ ### Inverses ## $$ \\begin{bmatrix} 1 \& 0 \& 0 \\ 3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 0 \& 0 \\ -3 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} \\begin{bmatrix} 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \\ 0 \& 0 \& 1 \\ \\end{bmatrix} $$

相关推荐
Σίσυφος19002 小时前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
_OP_CHEN14 小时前
【算法基础篇】(五十七)线性代数之矩阵乘法从入门到实战:手撕模板 + 真题详解
线性代数·算法·矩阵·蓝桥杯·c/c++·矩阵乘法·acm/icpc
芷栀夏15 小时前
CANN ops-math:从矩阵运算到数值计算的全维度硬件适配与效率提升实践
人工智能·神经网络·线性代数·矩阵·cann
种时光的人1 天前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
Zfox_1 天前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
lbb 小魔仙1 天前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
劈星斩月1 天前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
池央2 天前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
深鱼~2 天前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_2 天前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构