昇思学习营-【模型推理和性能优化】学习心得_20250730

一、权重的加载

模型包含两部分:

base model 和 LoRA adapter

其中base model的权重在微调时被冻结,

推理时加载原权重即可,LoRA adapter可通过PeftModel.from_pretrained进行加载。

二、启动推理

通过model.generate,启动推理。

三、效果比较

"DeepSeek-R1",而在加载LoRA adapter之后,回答为"甄嬛"。

在微调多轮后的LoRA权重,在加载LoRA adapter之后,回答为"甄嬛"

在generate_kwargs中添加 repetition_penalty=1.2减少重复文本输出

四、性能测试

凡是在推理过程中涉及采样(do_sample=True)的案例,可以通过配置如下变量,

注释掉之前添加的同步模式代码,再运行代码,即可获取每个token的推理时长和平均时长。

export INFERENCE_TIME_RECORD=True

此时,从终端的运⾏⽇志可以看到,平均推理时间为0.727秒,

可通过禁用多线程将推理速度适当提升为平均单token推理时长0.674秒。

五、性能优化

通过上述禁用多线程的方式,可以适当减少平均单token的推理时长,但效果不明显。

在此基础上,还可以通过jit即时编译的方式进一步加速

jit即时编译通过jit修饰器修饰Python函数或者Python类的成员函数使其被编译成计算图,通过图优化等技术提高运行速度。

jit修饰器应该修饰模型decode的函数,但由于原代码将模型的logits计算、解码等过程整体封装成了一个

model.generate函数,不好进行优化,所以需要手动实现解码逻辑。

六、实操

6.1 访问云上Jupyter

6.1.1 点击"打开Jupyter在线编程"

6.1.2 选择如下红框中的来运行起来:

6.1.3 进入后,选择"应用实际"、"昇腾开发板"

6.1.4 进入后,选择"deepdeek-r1-distill-qwen-1.5b-jit.ipynb**"并运行它

七、代码的逻辑

7.1 每一步执行推理的时间都打印了出来,较之前有提升

7.2 运行结果

相关推荐
摘星编程1 小时前
私有化部署全攻略:开源模型本地化改造的性能与安全评测
性能优化·私有化部署·开源模型·安全防护·企业级ai
奶黄小甜包1 小时前
C语言零基础第18讲:自定义类型—结构体
c语言·数据结构·笔记·学习
Peter(阿斯拉)3 小时前
[Java性能优化]_[时间优化]_[字符串拼接的多种方法性能分析]
java·性能优化·stringbuilder·string·字符串拼接·stringbuffer·时间优化
rannn_1113 小时前
【MySQL学习|黑马笔记|Day7】触发器和锁(全局锁、表级锁、行级锁、)
笔记·后端·学习·mysql
DemonAvenger3 小时前
MySQL索引原理深度解析与优化策略实战
数据库·mysql·性能优化
189228048614 小时前
NY270NY273美光固态闪存NY277NY287
服务器·网络·数据库·科技·性能优化
喜欢吃燃面4 小时前
C++算法竞赛:位运算
开发语言·c++·学习·算法
传奇开心果编程4 小时前
【传奇开心果系列】Flet框架实现的家庭记账本示例自定义模板
python·学习·ui·前端框架·自动化
_Kayo_10 小时前
node.js 学习笔记3 HTTP
笔记·学习
CCCC131016313 小时前
嵌入式学习(day 28)线程
jvm·学习