从0到1理解大语言模型:读《大语言模型:从理论到实践(第2版)》笔记

从0到1理解大语言模型:前3章精华速读

------读《大语言模型:从理论到实践(第2版)》笔记

如果你只有 30 分钟,又想快速搞懂"大语言模型到底怎么炼成的",这篇文章就是为你准备的。

我提炼了官方 400 页巨著的前 3 章,用中文讲人话,帮你把"概念 → 结构 → 数据"一次性串起来。


第1章 绪论:一句话说清大模型是什么

关键词 一句话解释
语言模型 给任何一段文本算概率的机器:越像人话,分越高。
参数量≥100 亿,阅读过 1 T 以上文本。
自监督 不用人工标注,直接拿下一词预测当"老师"。
三个阶段 ①预训练(学语言)→ ②指令微调(学听话)→ ③强化学习(学讨好)。

经验法则:模型越大、数据越多、算力越猛,效果越"玄学式"提升。OpenAI 管这叫 Scaling Laws:损失值随参数/数据/算力指数下降。


第2章 大模型骨架:Transformer 全家桶

2.1 底层积木:Transformer 结构

  • Embedding 把词变向量;Positional Encoding 给位置打坐标。
  • Self-Attention 让每个词"偷窥"上下文,距离不再是问题。
  • FFN 两层全连接做非线性变换;残差 + LayerNorm 保稳定。
  • Encoder vs Decoder 只在机器翻译用,GPT 系列只用 Decoder。

2.2 GPT 系列如何炼成

  1. 预训练:用 45 TB 网页 → 570 GB 干净文本,做"下一词预测"。
  2. 微调:把下游任务化成"填空题",用几千~几万条标注即可。
  3. 提示(Prompting):不给权重,只给示范,模型也能举一反三。

2.3 LLaMA 做了哪些小改进

  • 前置 RMSNorm → 训练更稳。
  • SwiGLU 激活 → 比 ReLU 更丝滑。
  • RoPE 旋转位置编码 → 长度外推更友好。
  • 多查询/FlashAttention/MLA → 省显存、提速度。

一句话总结:LLaMA = GPT 结构 + 工程优化 + 开源,让平民也能玩 70 B 模型。


第3章 数据:为什么"Garbage in, garbage out"在大模型里被放大 100 倍

3.1 数据来源全景图

类型 占比 作用
通用网页 60 % 以上 学说话、学世界知识
书籍/百科 ~5 % 长文本连贯性、事实性
GitHub/论文/专利 5--10 % 代码、科学推理
多语言 5--20 % 跨语言对齐
领域语料(金融、医疗...) 1--5 % 下游任务"外挂知识"

经验:高质量小数据 > 低质量大数据。DeepMind 的 Chinchilla 法则:参数和词元 1:20 最划算。

3.2 数据炼金术:把 1 PB 原始网页变 100 GB 真·黄金

  1. 质量过滤
    • 规则法:长度、符号比、困惑度。
    • 模型法:用一个小模型给每段文本打分,砍掉低分。
  2. 去重
    • 句子级 50 字符以上重复直接剪。
    • 文档级 MinHash + URL 去重,防"Ctrl+C/V"污染。
  3. 隐私脱敏:正则 + NER,把身份证、邮箱、地址全抹掉。
  4. 词元化
    • BPE/WordPiece/ULM → 解决 OOV,中文 2~3 字节拼一字。
    • 字节级 BPE 保证多语言无死角。

3.3 数据影响实验

  • 规模:LLaMA 从 1 T 加到 15 T token,常识基准再涨 5--10 分。
  • 质量:同一量级,清洗后 vs 原始 CommonCrawl,下游任务提升 20 %。
  • 多样性:Gopher 实验发现,C4+MassiveWeb+Books+News 的黄金配比 ≈ 1:5:3:1,单一来源越纯越差。
  • 时效性:用 2019 年的新闻训的模型,在 2023 年测试集上掉 3--5 分。

一张图带走前 3 章核心

复制代码
            第1章                第2章                第3章
   概念 ---------------> 结构 ---------------> 数据
     ↑              ↑              ↑
Scaling Laws  →  Transformer   →  Chinchilla
     ↓              ↓              ↓
   越大越好        越稳越快       越干净越好

彩蛋:读完就能回答的 3 个面试高频题

  1. 为什么 LLaMA 3 用 15 T token 训练,而 GPT-3 只用了 0.3 T?

    → Chinchilla 定律:参数 70 B 时,最优 token 数 ≈ 1.4 T;405 B 时,≈ 15 T。

  2. FlashAttention 到底省了什么?

    → 省显存:把 O(N²) 的 Attention 矩阵拆块放 SRAM,算完即丢;速度反而更快(重新计算 < 访存延迟)。

  3. 数据清洗最大的坑是什么?

    → 测试集泄露。CommonCrawl 里混了 GLUE、MMLU 的题,不剔除直接"刷榜"=作弊。

相关推荐
点云SLAM2 小时前
Eigen 中矩阵的拼接(Concatenation)与 分块(Block Access)操作使用详解和示例演示
人工智能·线性代数·算法·矩阵·eigen数学工具库·矩阵分块操作·矩阵拼接操作
悠哉悠哉愿意2 小时前
【电赛学习笔记】MaixCAM 的OCR图片文字识别
笔记·python·嵌入式硬件·学习·视觉检测·ocr
木枷3 小时前
NAS-Bench-101: Towards Reproducible Neural Architecture Search
人工智能·物联网
BAOYUCompany3 小时前
暴雨服务器更懂人工智能+
运维·服务器·人工智能
飞哥数智坊3 小时前
Coze实战第17讲:工资条自动拆分+一对一邮件发送
人工智能·coze
cwn_3 小时前
自然语言处理NLP (1)
人工智能·深度学习·机器学习·自然语言处理
_Kayo_3 小时前
VUE2 学习笔记5 动态绑定class、条件渲染、列表过滤与排序
笔记·学习
点云SLAM3 小时前
PyTorch中flatten()函数详解以及与view()和 reshape()的对比和实战代码示例
人工智能·pytorch·python·计算机视觉·3d深度学习·张量flatten操作·张量数据结构
智海观潮3 小时前
Unity Catalog与Apache Iceberg如何重塑Data+AI时代的企业数据架构
大数据·人工智能·ai·iceberg·catalog
爱分享的飘哥4 小时前
第三篇:VAE架构详解与PyTorch实现:从零构建AI的“视觉压缩引擎”
人工智能·pytorch·python·aigc·教程·生成模型·代码实战