大模型本地部署:手把手带你在Mac本地部署运行AI大模型

本文较长,建议点赞收藏,以免遗失。更多AI大模型开发 学习视频/籽料/面试题 都在这>>Github<<

在当前的技术环境下,大型语言模型(LLMs)已经成为人工智能领域的一个重要里程碑。这些模型能够在各种任务上展现出人类水平的性能,包括但不限于文本生成、语言理解和问题解答。随着开源项目的发展,个人开发者现在有机会在本地部署这些强大的模型,以探索和利用它们的潜力。

本文将详细介绍如何使用Ollama,一个开源项目,在Mac上本地运行大型模型(Win同理)。通过遵循以下步骤,即使是配备了几年前硬件的电脑,也能够顺利完成部署和运行。

第一步:下载和安装Ollama

  • 以 mac 为例,访问Ollama的Mac下载页面,您会看到如下所示的下载页面:下载网页地址
  • 下载完成后,双击解压软件,您将看到应用安装界面,如下图所示::

第二步:下载模型并运行 mistral-7b 大模型

  • 打开终端,输入命令ollama run mistral以启动Ollama并下载所需的大型模型,下图显示了mistral-7b模型的下载过程,
  • 下载完成后,您可以像下图所示运行Ollama,并询问例如"why sky id blue?"的问题,以测试模型的响应:

第三步:设置前端界面和Docker环境

  • 下载前端页面。在终端中运行以下命令,克隆open-webui前端项目:
perl 复制代码
perl
git clone https://github.com/open-webui/open-webui.git
  • 使用以下命令下载并运行Docker镜像,为Ollama设置一个前端界面:
kotlin 复制代码
kotlin
cd open-webui
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
  • 打开浏览器,输入网址http://localhost:3000/,选择您刚下载的模型mistral:latest (3.8GB),即可开始探索大型模型的强大功能。

此外,对于那些关注电脑配置的用户,以下是一个配置示例,表明即使是老旧的电脑也能够运行这些大型模型,本指南使用的电脑配置如图

通过遵循这个指南,任何拥有基本计算机技能的用户都可以在本地部署和运行大型模型,进一步探索人工智能的前沿技术。这不仅为开发者提供了一个实验和学习的平台,也为研究人员和爱好者提供了一个探索AI模型潜力的机会。

相关推荐
青衫客3620 小时前
浅谈 LightRAG —— 把“结构理解”前移到索引阶段的 RAG 新范式
大模型·llm·rag
破烂pan21 小时前
模型推理加速技术全景解析:从基础优化到前沿创新
llm·模型加速
程序员鱼皮21 小时前
消息队列从入门到跑路,保姆级教程!傻子可懂
数据库·程序员·消息队列
visnix21 小时前
AI大模型-LLM原理剖析到训练微调实战(第二部分:大模型核心原理与Transformer架构)
前端·llm
Logic1011 天前
C程序设计(第五版)谭浩强 第七章课后习题优化算法与核心步骤解析
c语言·visualstudio·程序员·学习笔记·软件开发·编程基础·c语言入门
智泊AI1 天前
重磅!小米刚刚发布新模型MiMo-V2-Flash开源了!
llm
骚戴1 天前
大语言模型(LLM)进阶:从闭源大模型 API 到开源大模型本地部署,四种接入路径全解析
java·人工智能·python·语言模型·自然语言处理·llm·开源大模型
无限大61 天前
为什么玩游戏需要独立显卡?——GPU与CPU的分工协作
后端·程序员
stark张宇1 天前
别掉队!系统掌握 LLM 应用开发,这可能是你今年最值得投入的学习方向
人工智能·llm·agent