机器学习——互信息(超详细)

在机器学习中,Mutual Information(互信息) 是一种用于衡量两个变量之间相关性或依赖性 的统计量。它描述了一个变量中包含了多少关于另一个变量的信息 ,广泛用于特征选择、信息增益计算等任务。

一、互信息的定义

互信息(Mutual Information, MI)基于信息论,衡量随机变量 的信息共享程度:

其中:

:联合概率分布

:X的边缘分布

:Y的边缘分布

直观解释:

完全独立时,,此时

能完全决定 时,互信息越大

二、直观理解

互信息衡量"减少不确定性" :知道 的值后,能减少多少对 的不确定性?

它可以看作是熵(Entropy)的差值:

其中:

的熵(不确定性):

:已知 的条件熵(剩余不确定性):

如果 提供了很多信息,则条件熵会降低,互信息值就大。通俗来讲的话:就是 发生的概率减去在已知 发生时 发生的概率。

利用韦恩图表示为:

三、特征选择中的应用

在机器学习中,互信息常用于衡量特征与目标变量之间的关联度,尤其适合非线性关系。

示例:

假设要预测患者是否患病(: 0/1),并有以下特征:

  • 年龄(

  • 血压(

  • 邮编(

我们可以计算:

如果 ,说明邮编与疾病无关,可以舍弃。

如果 较大,则应保留。

四、与相关系数的区别

相关系数 (如皮尔逊相关):只衡量线性关系

互信息 :能捕捉任意关系(包括非线性),更通用。

例如:

的情况下,皮尔逊相关系数 ≈ 0(因为非线性),但互信息(存在强关系)。

五、在Python中计算互信息

Scikit-learn 提供了互信息计算工具:

python 复制代码
from sklearn.feature_selection import mutual_info_classif, mutual_info_regression
import pandas as pd
from sklearn.datasets import load_iris

# 以鸢尾花数据为例
data = load_iris()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target

# 分类问题使用 mutual_info_classif
mi_scores = mutual_info_classif(X, y)
print("互信息分数:", mi_scores)

输出的分数越高,说明该特征与目标变量关系越强。

相关推荐
深蓝学院21 小时前
自动驾驶目标检测十年进化之路:从像素、点云到多模态大模型的时代
人工智能·目标检测·自动驾驶
whaosoft-14321 小时前
51c自动驾驶~合集62
人工智能·机器学习·自动驾驶
梦梦c21 小时前
检查数据集信息
人工智能·计算机视觉
OpenBayes21 小时前
Open-AutoGLM 实现手机端自主操作;PhysDrive 数据集采集真实驾驶生理信号
人工智能·深度学习·机器学习·数据集·文档转换·图片生成·蛋白质设计
小北的AI科技分享21 小时前
信息技术领域中AI智能体的核心特性及模块构成
人工智能
pusheng202521 小时前
普晟传感直播预告 |重塑安全边界:储能与AI数据中心的锂电风险、气体探测技术革新与可量化风险管控
人工智能·安全
资源站shanxueit或com21 小时前
智泊AI-AGI大模型全栈课12期【VIP】
人工智能
转转技术团队21 小时前
转转大数据与AI——数据治理安全打标实践
大数据·人工智能·后端
哆啦叮当21 小时前
VADv2 基于概率规划的端到端自动驾驶模型
人工智能·机器学习·自动驾驶
五月底_21 小时前
GRPO参数详解
人工智能·深度学习·nlp·rl·grpo