机器学习——互信息(超详细)

在机器学习中,Mutual Information(互信息) 是一种用于衡量两个变量之间相关性或依赖性 的统计量。它描述了一个变量中包含了多少关于另一个变量的信息 ,广泛用于特征选择、信息增益计算等任务。

一、互信息的定义

互信息(Mutual Information, MI)基于信息论,衡量随机变量 的信息共享程度:

其中:

:联合概率分布

:X的边缘分布

:Y的边缘分布

直观解释:

完全独立时,,此时

能完全决定 时,互信息越大

二、直观理解

互信息衡量"减少不确定性" :知道 的值后,能减少多少对 的不确定性?

它可以看作是熵(Entropy)的差值:

其中:

的熵(不确定性):

:已知 的条件熵(剩余不确定性):

如果 提供了很多信息,则条件熵会降低,互信息值就大。通俗来讲的话:就是 发生的概率减去在已知 发生时 发生的概率。

利用韦恩图表示为:

三、特征选择中的应用

在机器学习中,互信息常用于衡量特征与目标变量之间的关联度,尤其适合非线性关系。

示例:

假设要预测患者是否患病(: 0/1),并有以下特征:

  • 年龄(

  • 血压(

  • 邮编(

我们可以计算:

如果 ,说明邮编与疾病无关,可以舍弃。

如果 较大,则应保留。

四、与相关系数的区别

相关系数 (如皮尔逊相关):只衡量线性关系

互信息 :能捕捉任意关系(包括非线性),更通用。

例如:

的情况下,皮尔逊相关系数 ≈ 0(因为非线性),但互信息(存在强关系)。

五、在Python中计算互信息

Scikit-learn 提供了互信息计算工具:

python 复制代码
from sklearn.feature_selection import mutual_info_classif, mutual_info_regression
import pandas as pd
from sklearn.datasets import load_iris

# 以鸢尾花数据为例
data = load_iris()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target

# 分类问题使用 mutual_info_classif
mi_scores = mutual_info_classif(X, y)
print("互信息分数:", mi_scores)

输出的分数越高,说明该特征与目标变量关系越强。

相关推荐
Terrence Shen21 小时前
【CUDA编程系列】之01
c++·人工智能·深度学习·机器学习
老吴学AI21 小时前
系列报告十:(Menlo)《2025: The State of Generative AI in the Enterprise》
人工智能·vibe coding
AI即插即用21 小时前
超分辨率重建 | CVPR 2024 DarkIR:轻量级低光照图像增强与去模糊模型(代码实践)
图像处理·人工智能·深度学习·神经网络·计算机视觉·超分辨率重建
喜欢吃豆21 小时前
深度解析:FFmpeg 远程流式解复用原理与工程实践
人工智能·架构·ffmpeg·大模型·音视频·多模态
ChaITSimpleLove21 小时前
AI时代编程范式:“游击战”与“阵地战”的灵活应用
人工智能·ai编程范式·战略思维·战术思维·灵活策略·游击战与阵地战
hacker70721 小时前
精进Excel图表:AI赋能,成为Excel图表高手
人工智能·信息可视化·excel
OpenBayes21 小时前
HY-MT1.5-1.8B 支持多语言神经机器翻译;Med-Banana-50K 提供医学影像编辑基准数据
人工智能·深度学习·自然语言处理·数据集·机器翻译·图像生成
综合热讯21 小时前
脑机接口赋能 认知障碍诊疗迈入精准时代
人工智能·机器学习·数据挖掘
victory043121 小时前
pytorch 矩阵乘法和实际存储形状的差异
人工智能·pytorch·矩阵
之歆21 小时前
Spring AI入门到实战到原理源码-多模型协作智能客服系统
java·人工智能·spring