使用trae进行本地ai对话机器人的构建

前言

在人工智能技术快速发展的今天,构建本地AI对话机器人已成为开发者和技术爱好者的热门选择。使用 trae可以高效地实现这一目标,确保数据隐私和响应速度。本文将详细介绍如何利用 Trae 搭建本地AI对话机器人,涵盖环境配置、模型加载、对话逻辑实现以及优化技巧,帮助读者从零开始构建一个功能完整的AI助手。 本地化AI对话机器人的优势在于完全离线运行,避免网络延迟和数据泄露风险,同时支持自定义训练模型以适应特定场景需求。无论是用于个人助理、客服系统,还是智能家居控制,Trae 都能提供灵活的解决方案。

获取api相关信息

打开蓝耘进行登录,如果你是新人的话需要进行注册操作,输入你相关的信息就能进行注册成功

在平台顶部导航栏可以看到Maas平台,点击进入模型广场 来到模型广场可以看到很多的ai模型,比如就有我们的kimi k2模型

点击进去可以看到kimi k2模型的相关信息,我们将模型的id进行复制,等会儿我们是要用到的 /maas/kimi/Kimi-K2-Instruct 并且这里还具有在线体验的功能,生成回答速度快 archive.lanyun.net/#/maas/%E6%...这里还有详细的api调用方法,我们这里使用python进行调用,这里可以看到我们框出来的两个变量,等调用的时候我们是需要进行更改的,model我们填写/maas/kimi/Kimi-K2-Instruct api我们在Maas平台首页的api创建页就能进行生成 固然示例代码如下:

Python 复制代码
from openai import OpenAI

# 构造 client
client = OpenAI(
    api_key="sk-xxxxxxxxxxx",  # APIKey
    base_url="https://maas-api.lanyun.net/v1",
)
# 流式
stream = True
# 请求
chat_completion = client.chat.completions.create(
    model="/maas/kimi/Kimi-K2-Instruct",
    messages=[
        {
            "role": "user",
            "content": "你是谁",
        }
    ],
    stream=stream,
)
if stream:
   for chunk in chat_completion:
       # 打印思维链内容
       if hasattr(chunk.choices[0].delta, 'reasoning_content'):
          print(f"{chunk.choices[0].delta.reasoning_content}", end="")
       # 打印模型最终返回的content
       if hasattr(chunk.choices[0].delta, 'content'):
          if chunk.choices[0].delta.content != None and len(chunk.choices[0].delta.content) != 0:
             print(chunk.choices[0].delta.content, end="")
else:
   result = chat_completion.choices[0].message.content

使用trae进行实战

在获取到了调用的示例代码之后我们就可以让ai帮我们生成对应的程序了 打开trae,将我们的需求写入到README文件中,效果如下:

接下来我们就可以开始进行提问了,如果你们有其他新鲜的想法都是可以写到这个README文件中的,这里他是给我们生成一个网页端的

我们这里首先得先进行代码依赖的安装操作

bash 复制代码
Flask==2.3.3
openai==1.3.0
Werkzeug==2.3.7

在终端输入命令将文件中对应的依赖进行安装

bash 复制代码
pip install -r requirements.txt 

然后我们运行对应的文件,效果如下 可以在终端输入命令

bash 复制代码
python simple_server.py 

这样我们就能在网页端进行体验了,在本机的8080端口开放

这里我们可以在终端看到我们的程序是正常运行的,但是因为favicon.ico导致了报错现象,所以我们让ai改改代码忽略下这个文件 修改后的效果如下: 后期稍微把生成的效果格式改改就差不多了,有一说一这个生成的速度还是很快的

总结

蓝耘深刻理解到了企业在智能化转型中的痛点:部署难、成本高、效率低。蓝耘以极致的易用性卓越的性价比 破局而来!平台界面非常的清晰直观,功能模块化设计,让非技术背景的人员也能轻松驾驭AI的力量,大幅降低技术门槛。同时,其智能化的资源管理和弹性伸缩能力,进一步确保了每一分投入都精准高效,显著降本增效,加速业务价值落地。蓝耘致力于打破技术鸿沟,让先进的算力与智能如同水电般触手可及。

在蓝耘,通过 trae 构建本地AI对话机器人不仅能提升技术能力,还能深入理解自然语言处理和机器学习模型的底层逻辑。本文详细介绍了环境搭建、模型集成、交互逻辑设计等关键步骤,帮助开发者快速实现本地化AI对话应用。

最后,希望本文能为读者提供清晰的指引,助力实现更强大的本地AI应用。如果有任何问题或改进建议,欢迎进一步交流探讨!

相关推荐
彩云回1 小时前
多维尺度分析法(MDS)
人工智能·机器学习·1024程序员节
FL16238631292 小时前
智慧交通红绿灯检测数据集VOC+YOLO格式1215张3类别
深度学习·yolo·机器学习
兩尛4 小时前
神经网络补充知识
人工智能·神经网络·机器学习
电鱼智能的电小鱼5 小时前
基于电鱼 ARM 工控机的煤矿主控系统高可靠运行方案——让井下控制系统告别“死机与重启”
arm开发·人工智能·嵌入式硬件·深度学习·机器学习
长桥夜波6 小时前
机器学习日报09
人工智能·机器学习
TGITCIC6 小时前
通过神经网络手搓一个带finetune功能的手写数字识别来学习“深度神经网络”
人工智能·深度学习·机器学习·卷积神经网络·dnn·文字识别·识别数字
yumgpkpm9 小时前
CMP(类ClouderaCDP7.3(404次编译) )完全支持华为鲲鹏Aarch64(ARM)使用 AI 优化库存水平、配送路线的具体案例及说明
大数据·人工智能·hive·hadoop·机器学习·zookeeper·cloudera
Cathy Bryant9 小时前
智能模型对齐(一致性)alignment
笔记·神经网络·机器学习·数学建模·transformer
南汐汐月11 小时前
重生归来,我要成功 Python 高手--day31 线性回归
python·机器学习·线性回归