在智慧社区建设中,人脸识别技术的应用极大提升了小区管理效率和安全性。本文将介绍如何使用 Spring Boot 框架结合百度 AI 人脸识别 API,实现小区人员出入自动识别与记录管理功能。
系统功能概述
本系统主要包含两大核心功能:
- 人脸识别出入管理:通过摄像头采集人脸图像,自动识别人员身份并记录出入时间
- 出入记录查询:支持按时间范围、人员姓名等条件查询出入记录,方便管理人员统计分析
技术栈选择
- 后端框架:Spring Boot 2.7.4
- 持久层框架:MyBatis-Plus 3.5.1
- 数据库:MySQL
- 人脸识别:百度 AI 开放平台
- 工具类:Hutool、Lombok
- 前端交互:RESTful API
核心依赖配置
首先在pom.xml中添加核心依赖:
XML
<!-- 百度AI SDK -->
<dependency>
<groupId>com.baidu.aip</groupId>
<artifactId>java-sdk</artifactId>
<version>4.16.19</version>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- Spring Boot核心依赖 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!-- 数据访问 -->
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-boot-starter</artifactId>
<version>3.5.1</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>
</dependency>
<!-- 工具类 -->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.2.4</version>
</dependency>
<!-- 文件处理 -->
<dependency>
<groupId>commons-fileupload</groupId>
<artifactId>commons-fileupload</artifactId>
<version>1.3.1</version>
</dependency>
数据模型设计
出入记录实体类
java
@Data
@TableName("in_out_record")
public class InOutRecordEntity implements Serializable {
private static final long serialVersionUID = 1L;
@TableId(value = "in_out_record_id", type = IdType.AUTO)
private Integer inOutRecordId;
@TableField("person_id")
private Integer personId;
@TableField("community_id")
private Integer communityId;
@TableField("in_time")
private LocalDateTime inTime;
@TableField("out_time")
private LocalDateTime outTime;
@TableField("in_pic")
private String inPic;
@TableField("out_pic")
private String outPic;
}
出入记录查询表单
java
@Data
public class InOutForm {
private Long page;
private Long limit;
private String userName;
@JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss")
private LocalDateTime startDate;
@JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss")
private LocalDateTime endDate;
}
出入记录 VO 类(用于前端展示)
java
@Data
public class InOutRecordVO {
@TableId(value = "in_out_record_id", type = IdType.AUTO)
private Integer inOutRecordId;
private Integer personId;
private Integer communityId;
private LocalDateTime inTime;
private LocalDateTime outTime;
private String inPic;
private String outPic;
// 扩展字段,用于展示
private String userName;
private String communityName;
private String termName;
private String houseNo;
}
百度 AI 工具类实现
封装百度 AI 人脸识别相关操作:
java
@Component
@Slf4j
public class BaiduAiUtils {
@Value("${baidu.face.appId}")
private String APP_ID;
@Value("${baidu.face.apiKey}")
private String API_KEY;
@Value("${baidu.face.secretKey}")
private String SECRET_KEY;
@Value("${baidu.face.imageType}")
private String IMAGE_TYPE;
@Value("${baidu.face.groupId}")
private String groupId;
private AipFace client;
private HashMap<String, Object> options = new HashMap<>();
public BaiduAiUtils() {
// 设置图像质量控制
options.put("quality_control", "NORMAL");
// 设置活体检测控制级别
options.put("liveness_control", "LOW");
}
@PostConstruct
public void init() {
// 初始化百度AI客户端
client = new AipFace(APP_ID, API_KEY, SECRET_KEY);
}
/**
* 人脸检测(检查是否有且仅有一张人脸)
*/
public Boolean faceCheck(String image) {
JSONObject res = client.detect(image, IMAGE_TYPE, options);
log.info("detect result :{}", res);
if (res.has("error_code") && res.getInt("error_code") == 0) {
JSONObject resultObject = res.getJSONObject("result");
Integer faceNum = resultObject.getInt("face_num");
return faceNum == 1;
}
return false;
}
/**
* 人脸搜索(匹配用户)
*/
public String faceSearch(String image) {
JSONObject res = client.search(image, IMAGE_TYPE, groupId, options);
log.info("search result :{}", res);
if (res.has("error_code") && res.getInt("error_code") == 0) {
JSONObject result = res.getJSONObject("result");
JSONArray userList = result.getJSONArray("user_list");
if (userList.length() > 0) {
JSONObject user = userList.getJSONObject(0);
double score = user.getDouble("score");
// 置信度大于80分认为匹配成功
if (score > 80) {
return user.getString("user_id");
}
}
}
return null;
}
}
业务逻辑实现
出入记录服务实现类
java
@Service
public class InOutRecordServiceImpl extends ServiceImpl<InOutRecordMapper, InOutRecordEntity> implements InOutRecordService {
@Autowired
private InOutRecordMapper inOutRecordMapper;
@Autowired
private PersonMapper personMapper;
@Override
public InOutPageListVO getInOutList(InOutForm form) {
Page<InOutRecordEntity> page = new Page<>(form.getPage(), form.getLimit());
QueryWrapper<InOutRecordEntity> queryWrapper = new QueryWrapper<>();
// 时间范围查询
if (form.getStartDate() != null && form.getEndDate() != null) {
queryWrapper.between("in_time", form.getStartDate(), form.getEndDate());
}
// 如果需要按用户名查询,可以在这里添加关联查询条件
Page<InOutRecordEntity> pages = inOutRecordMapper.selectPage(page, queryWrapper);
List<InOutRecordVO> inOutRecordVOList = new ArrayList<>();
// 转换为VO对象并补充关联信息
for(InOutRecordEntity entity : pages.getRecords()){
InOutRecordVO vo = new InOutRecordVO();
BeanUtils.copyProperties(entity, vo);
PersonEntity person = personMapper.selectById(entity.getPersonId());
if (person != null) {
vo.setUserName(person.getUserName());
vo.setHouseNo(person.getHouseNo());
}
// 获取小区名称
vo.setCommunityName(personMapper.selectCommunityNameByID(entity.getCommunityId()));
inOutRecordVOList.add(vo);
}
// 封装分页结果
InOutPageListVO result = new InOutPageListVO();
result.setRecords(inOutRecordVOList);
result.setTotalCount(pages.getTotal());
result.setPageSize(pages.getSize());
result.setTotalPage(pages.getPages());
result.setCurrPage(pages.getCurrent());
return result;
}
@Override
public InOutRecordEntity findLatestRecord(Integer personId) {
QueryWrapper<InOutRecordEntity> queryWrapper = new QueryWrapper<>();
queryWrapper.eq("person_id", personId)
.orderByDesc("in_time")
.last("LIMIT 1");
return this.getOne(queryWrapper);
}
}
控制器实现
人脸识别与出入记录控制器
java
@RestController
@RequestMapping("/sys/inOut")
public class InOutRecordController {
@Autowired
private BaiduAiUtils baiduAiUtils;
@Autowired
private PersonService personService;
@Autowired
private InOutRecordService recordService;
@Value("${file.upload-dir}")
private String uploadDir;
/**
* 人脸识别接口
*/
@PostMapping("/add")
public Result add(@RequestBody FaceForm faceForm) {
// 提取Base64图像数据
String fileBase64 = faceForm.getFileBase64();
if (fileBase64.contains(",")) {
fileBase64 = fileBase64.split(",")[1];
}
// 1. 检测人脸
boolean hasValidFace = baiduAiUtils.faceCheck(fileBase64);
if (!hasValidFace) {
return Result.error("人脸检测失败");
}
// 2. 人脸搜索匹配用户
String userId = baiduAiUtils.faceSearch(fileBase64);
if (userId == null) {
return Result.ok().put("data", "人员信息不存在").put("status", "fail");
}
// 3. 查询用户信息
int personId;
try {
personId = Integer.parseInt(userId);
} catch (NumberFormatException e) {
return Result.error("用户ID格式错误");
}
PersonEntity person = personService.getById(personId);
if (person == null) {
return Result.ok().put("data", "人员信息不存在").put("status", "fail");
}
try {
// 4. 保存图片到本地
String fileName = System.currentTimeMillis() + ".png";
String filePath = Paths.get(uploadDir, fileName).toString();
// 确保目录存在
File dir = new File(uploadDir);
if (!dir.exists()) {
dir.mkdirs();
}
// 解码并保存图片
byte[] imageBytes = Base64.getDecoder().decode(fileBase64);
Files.write(Paths.get(filePath), imageBytes);
// 构建图片URL
String fullUrl = "http://localhost:8080/photos/" + fileName;
// 5. 查找最近记录判断是入场还是出场
InOutRecordEntity latestRecord = recordService.findLatestRecord(personId);
if (latestRecord == null || latestRecord.getOutTime() != null) {
// 入场记录
InOutRecordEntity newRecord = new InOutRecordEntity();
newRecord.setCommunityId(faceForm.getCommunityId());
newRecord.setPersonId(personId);
newRecord.setInTime(LocalDateTime.now());
newRecord.setInPic(fullUrl);
recordService.save(newRecord);
return Result.ok().put("data", person.getUserName() + "进入小区").put("status", "success");
} else {
// 出场记录
latestRecord.setOutTime(LocalDateTime.now());
latestRecord.setOutPic(fullUrl);
recordService.updateById(latestRecord);
return Result.ok().put("data", person.getUserName() + "离开小区").put("status", "success");
}
} catch (Exception e) {
e.printStackTrace();
return Result.error("操作失败: " + e.getMessage());
}
}
/**
* 出入记录查询接口
*/
@GetMapping("/list")
public Result list(InOutForm form) {
// 获取分页数据
InOutPageListVO pageListVO = inOutRecordService.getInOutList(form);
// 构建返回结构
Map<String, Object> pageListMap = new HashMap<>();
pageListMap.put("totalCount", pageListVO.getTotalCount());
pageListMap.put("pageSize", pageListVO.getPageSize());
pageListMap.put("totalPage", pageListVO.getTotalPage());
pageListMap.put("currPage", pageListVO.getCurrPage());
pageListMap.put("list", pageListVO.getRecords());
Map<String, Object> dataMap = new HashMap<>();
dataMap.put("pageList", pageListMap);
return Result.ok().put("data", dataMap);
}
}
接口使用说明
人脸识别接口
请求地址 :POST /sys/inOut/add
请求参数:
python
{
"communityId": 2,
"extName": "png",
"fileBase64": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAAXNSR0IArs4c6QAAIABJREFUeF7sXe2OHblu3BljTX1lQUgyxEvv9HMQ5yIZq239/8B8gtdpbgl/6cAAAAASUVORK5CYII="
}
成功响应 (人员进入):
python
{
"msg": "操作成功",
"code": 200,
"data": "张三进入小区",
"status": "success"
}
失败响应(人员不存在):
python
{
"msg": "操作成功",
"code": 200,
"data": "人员信息不存在",
"status": "fail"
}
出入记录查询接口
请求地址 :GET /sys/inOut/list
请求参数:
python
{
"page": 1,
"limit": 10,
"userName": "张三",
"startDate": "2023-07-20 12:59:54",
"endDate": "2023-07-20 23:00:00"
}
响应结果 :
python
{
"msg": "操作成功",
"code": 200,
"data": {
"pageList": {
"totalCount": 1,
"pageSize": 10,
"totalPage": 1,
"currPage": 1,
"list": [
{
"inOutRecordId": 44,
"inTime": "2023-07-19 16:51:55",
"outTime": "2023-07-19 16:52:07",
"inPic": "http://localhost:8181/villegePic/face/47b49187-a5e9-486a-b8ac-4409710b3323.png",
"outPic": "http://localhost:8181/villegePic/face/4cbfb2b9-a691-4d0a-a4d4-4bf602cb33ac.png",
"communityName": "栖海澐颂",
"termName": "8栋",
"houseNo": "802",
"userName": "丽丽"
}
]
}
}
}
系统优化建议
-
性能优化:
- 对人脸图片进行压缩处理,减少传输和存储开销
- 对查询接口添加缓存,提高高频查询效率
-
安全性增强:
- 提高活体检测级别,防止照片、视频等欺骗手段
- 对敏感接口添加权限控制
- 对 Base64 图片传输进行加密
-
功能扩展:
- 添加异常出入提醒功能
- 实现批量导出记录报表功能
- 增加访客临时授权功能
通过以上实现,我们构建了一个完整的小区人脸识别出入管理系统,该系统能够自动识别人员身份并记录出入信息,同时提供灵活的查询功能,为小区管理提供了便捷高效的解决方案。