PyTorch RNN 名字分类器详解
使用PyTorch实现的字符级RNN(循环神经网络)项目,用于根据人名预测其所属的语言/国家。该模型通过学习不同语言名字的字符模式,够识别名字的语言起源。
环境设置
            
            
              python
              
              
            
          
          import torch
import string
import unicodedata
import glob
import os
import time
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
        1. 数据预处理
1.1 字符编码处理
            
            
              python
              
              
            
          
          # 定义允许的字符集(ASCII字母 + 标点符号 + 占位符)
allowed_characters = string.ascii_letters + " .,;'" + "_"
n_letters = len(allowed_characters)  # 58个字符
def unicodeToAscii(s):
    """将Unicode字符串转换为ASCII"""
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn' and c in allowed_characters
    )
        关键点:
- 使用One-hot编码表示每个字符
 - 将非ASCII字符规范化(如 'Ślusàrski' → 'Slusarski')
 - 未知字符用 "_" 表示
 
1.2 张量转换
            
            
              python
              
              
            
          
          def letterToIndex(letter):
    """将字母转换为索引"""
    if letter not in allowed_characters:
        return allowed_characters.find("_")
    return allowed_characters.find(letter)
def lineToTensor(line):
    """将名字转换为张量 <line_length x 1 x n_letters>"""
    tensor = torch.zeros(len(line), 1, n_letters)
    for li, letter in enumerate(line):
        tensor[li][0][letterToIndex(letter)] = 1
    return tensor
        张量维度说明:
- 每个名字表示为3D张量:
[序列长度, 批次大小=1, 字符数=58] - 使用One-hot编码:每个字符位置只有一个1,其余为0
 
2. 数据集构建
2.1 自定义Dataset类
            
            
              python
              
              
            
          
          class NamesDataset(Dataset):
    def __init__(self, data_dir):
        self.data = []           # 原始名字
        self.data_tensors = []   # 名字的张量表示
        self.labels = []         # 语言标签
        self.labels_tensors = [] # 标签的张量表示
        
        # 读取所有.txt文件(每个文件代表一种语言)
        text_files = glob.glob(os.path.join(data_dir, '*.txt'))
        for filename in text_files:
            label = os.path.splitext(os.path.basename(filename))[0]
            lines = open(filename, encoding='utf-8').read().strip().split('\n')
            for name in lines:
                self.data.append(name)
                self.data_tensors.append(lineToTensor(name))
                self.labels.append(label)
        2.2 数据集划分
            
            
              python
              
              
            
          
          # 85/15 训练/测试集划分
train_set, test_set = torch.utils.data.random_split(
    alldata, [.85, .15], 
    generator=torch.Generator(device=device).manual_seed(2024)
)
        3. RNN模型架构
3.1 模型定义
            
            
              python
              
              
            
          
          class CharRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(CharRNN, self).__init__()
        
        # RNN层:输入大小 → 隐藏层大小
        self.rnn = nn.RNN(input_size, hidden_size)
        
        # 输出层:隐藏层 → 输出类别
        self.h2o = nn.Linear(hidden_size, output_size)
        
        # LogSoftmax用于分类
        self.softmax = nn.LogSoftmax(dim=1)
    def forward(self, line_tensor):
        rnn_out, hidden = self.rnn(line_tensor)
        output = self.h2o(hidden[0])
        output = self.softmax(output)
        return output
        模型参数:
- 输入大小:58(字符数)
 - 隐藏层大小:128
 - 输出大小:18(语言类别数)
 
4. 训练过程
4.1 训练函数
            
            
              python
              
              
            
          
          def train(rnn, training_data, n_epoch=10, n_batch_size=64, 
          learning_rate=0.2, criterion=nn.NLLLoss()):
    
    rnn.train()
    optimizer = torch.optim.SGD(rnn.parameters(), lr=learning_rate)
    
    for iter in range(1, n_epoch + 1):
        # 创建小批量
        batches = list(range(len(training_data)))
        random.shuffle(batches)
        batches = np.array_split(batches, len(batches)//n_batch_size)
        
        for batch in batches:
            batch_loss = 0
            for i in batch:
                label_tensor, text_tensor, label, text = training_data[i]
                output = rnn.forward(text_tensor)
                loss = criterion(output, label_tensor)
                batch_loss += loss
            
            # 反向传播和优化
            batch_loss.backward()
            nn.utils.clip_grad_norm_(rnn.parameters(), 3)  # 梯度裁剪
            optimizer.step()
            optimizer.zero_grad()
        训练技巧:
- 使用SGD优化器,学习率0.15
 - 梯度裁剪防止梯度爆炸
 - 批量大小:64
 
5. 模型评估
5.1 混淆矩阵可视化
            
            
              python
              
              
            
          
          def evaluate(rnn, testing_data, classes):
    confusion = torch.zeros(len(classes), len(classes))
    
    rnn.eval()
    with torch.no_grad():
        for i in range(len(testing_data)):
            label_tensor, text_tensor, label, text = testing_data[i]
            output = rnn(text_tensor)
            guess, guess_i = label_from_output(output, classes)
            label_i = classes.index(label)
            confusion[label_i][guess_i] += 1
    
    # 归一化并可视化
    # ...
        6. 训练结果
- 训练样本数:17,063
 - 测试样本数:3,011
 - 训练轮数:27
 - 最终损失:约0.43
 
损失曲线显示模型收敛良好,从初始的0.88降至0.43。


