正向矩阵(DCT)变换后还是一个矩阵,怎么减少存储空间

正向矩阵变换(如DCT、整数DCT等)本身输出的依然是矩阵,但通过能量集中特性 和后续的量化、熵编码等步骤,能够显著减少存储空间。这一过程的核心逻辑是:变换将原始数据的冗余信息集中到少数系数中,使大部分系数可被高效压缩或丢弃

为什么变换后的矩阵能减少存储空间?

  1. 能量集中:从"分散"到"集中"

    原始图像或视频残差块的像素值通常具有较强的空间相关性(例如相邻像素值接近),数据分布较为分散,直接存储会有大量冗余。

    而变换(如DCT)的核心作用是将这种空间域的冗余 转换为频率域的能量集中 ------即把原始数据的能量(信息)集中到少数低频系数中,而高频系数(对应细节、边缘的快速变化)的值很小甚至接近0。

    例如:一张平坦区域的4x4像素块,原始像素值可能都是255,变换后低频系数(左上角)会很大,其他高频系数几乎为0。

  2. 量化:保留重要信息,丢弃次要信息

    变换后的矩阵虽然仍是矩阵,但系数的"重要性"差异极大。通过量化步骤(用一个量化矩阵对变换系数进行除法取整),可以进一步放大这种差异:

    • 低频系数(能量集中区)被轻度量化,保留较大值;
    • 高频系数(能量微弱区)被重度量化,很多会变成0。
      量化后的矩阵中会出现大量连续的0,为后续压缩创造条件。
  3. 熵编码:高效压缩非零值和零

    经过量化后,矩阵中充满了0和少量非零值。此时通过熵编码(如Huffman编码、算术编码):

    • 对连续的0采用"游程编码"(记录0的数量而非逐个存储);
    • 对非零值根据其出现概率分配更短的编码。
      最终将矩阵转换为紧凑的二进制流,大幅减少存储空间。

举例说明:4x4像素块的压缩过程

假设一个4x4的残差块(原始数据,范围-128~127):

复制代码
[ 2,  3,  2,  1]
[ 3,  4,  3,  2]
[ 2,  3,  2,  1]
[ 1,  2,  1,  0]
  1. 正向DCT变换后:能量集中到低频系数(左上角),高频系数值很小:

    [24, 5, 0, -1]
    [ 6, 2, 0, 0]
    [ 0, 0, 0, 0]
    [-1, 0, 0, 0]

  2. 量化后:高频小系数被量化为0,矩阵变得稀疏:

    [3, 1, 0, 0]
    [1, 0, 0, 0]
    [0, 0, 0, 0]
    [0, 0, 0, 0]

  3. 熵编码后:用游程编码记录连续的0,非零值用短码表示,最终存储的二进制数据远小于原始矩阵(原始需16×8=128比特,编码后可能仅需20比特左右)。

总结

正向矩阵变换本身不直接减少数据量,但它通过能量集中 为后续的量化和熵编码提供了基础------让大部分数据变成可高效压缩的0,最终实现存储空间的大幅减少。这也是所有基于变换的压缩算法(如JPEG、H.264)的核心逻辑:变换是"预处理",量化和熵编码是"压缩执行",两者结合才能实现高效存储。

相关推荐
大模型实验室Lab4AI17 小时前
VideoLLaMA 3新一代前沿多模态基础模型赋能图像与视频深度理解| LLM | 计算机视觉
人工智能·计算机视觉·音视频
EasyDSS1 天前
视频推拉流平台EasyDSS无人机视频推拉流技术助力实现工地远程监控巡检直播
音视频·无人机
眠りたいです1 天前
基于脚手架微服务的视频点播系统-服务端开发部分接口定义,数据库表设计,视频索引设计,缓存与消息队列设计部分
数据库·c++·缓存·微服务·云原生·架构·音视频
EasyCVR1 天前
视频融合平台EasyCVR助力守护渔业牧区安全与增效
安全·音视频
大模型实验室Lab4AI1 天前
CVPR 2024 | 赋能大语言模型以精准理解视频时序瞬间 | LLM | 时序预测
人工智能·语言模型·音视频
YUJIANYUE1 天前
查立得PHP+mysql个人微博系统V1.0支持图文视频音频文件
mysql·php·音视频
stereohomology2 天前
ffmpeg视频mp4到gif用大模型很方便
ffmpeg·音视频
温柔哥`2 天前
HiProbe-VAD:通过在免微调多模态大语言模型中探测隐状态实现视频异常检测
人工智能·语言模型·音视频
Hello 0 12 天前
视频号直播视频录制
python·音视频·流媒体·直播视频录制
ACP广源盛139246256732 天前
GSV2201S(1201S)@ACP#支持嵌入式 MCU 的 DisplayPort 1.4 到 HDMI 2.0 转换器
单片机·嵌入式硬件·电脑·音视频