正向矩阵(DCT)变换后还是一个矩阵,怎么减少存储空间

正向矩阵变换(如DCT、整数DCT等)本身输出的依然是矩阵,但通过能量集中特性 和后续的量化、熵编码等步骤,能够显著减少存储空间。这一过程的核心逻辑是:变换将原始数据的冗余信息集中到少数系数中,使大部分系数可被高效压缩或丢弃

为什么变换后的矩阵能减少存储空间?

  1. 能量集中:从"分散"到"集中"

    原始图像或视频残差块的像素值通常具有较强的空间相关性(例如相邻像素值接近),数据分布较为分散,直接存储会有大量冗余。

    而变换(如DCT)的核心作用是将这种空间域的冗余 转换为频率域的能量集中 ------即把原始数据的能量(信息)集中到少数低频系数中,而高频系数(对应细节、边缘的快速变化)的值很小甚至接近0。

    例如:一张平坦区域的4x4像素块,原始像素值可能都是255,变换后低频系数(左上角)会很大,其他高频系数几乎为0。

  2. 量化:保留重要信息,丢弃次要信息

    变换后的矩阵虽然仍是矩阵,但系数的"重要性"差异极大。通过量化步骤(用一个量化矩阵对变换系数进行除法取整),可以进一步放大这种差异:

    • 低频系数(能量集中区)被轻度量化,保留较大值;
    • 高频系数(能量微弱区)被重度量化,很多会变成0。
      量化后的矩阵中会出现大量连续的0,为后续压缩创造条件。
  3. 熵编码:高效压缩非零值和零

    经过量化后,矩阵中充满了0和少量非零值。此时通过熵编码(如Huffman编码、算术编码):

    • 对连续的0采用"游程编码"(记录0的数量而非逐个存储);
    • 对非零值根据其出现概率分配更短的编码。
      最终将矩阵转换为紧凑的二进制流,大幅减少存储空间。

举例说明:4x4像素块的压缩过程

假设一个4x4的残差块(原始数据,范围-128~127):

复制代码
[ 2,  3,  2,  1]
[ 3,  4,  3,  2]
[ 2,  3,  2,  1]
[ 1,  2,  1,  0]
  1. 正向DCT变换后:能量集中到低频系数(左上角),高频系数值很小:

    [24, 5, 0, -1]
    [ 6, 2, 0, 0]
    [ 0, 0, 0, 0]
    [-1, 0, 0, 0]

  2. 量化后:高频小系数被量化为0,矩阵变得稀疏:

    [3, 1, 0, 0]
    [1, 0, 0, 0]
    [0, 0, 0, 0]
    [0, 0, 0, 0]

  3. 熵编码后:用游程编码记录连续的0,非零值用短码表示,最终存储的二进制数据远小于原始矩阵(原始需16×8=128比特,编码后可能仅需20比特左右)。

总结

正向矩阵变换本身不直接减少数据量,但它通过能量集中 为后续的量化和熵编码提供了基础------让大部分数据变成可高效压缩的0,最终实现存储空间的大幅减少。这也是所有基于变换的压缩算法(如JPEG、H.264)的核心逻辑:变换是"预处理",量化和熵编码是"压缩执行",两者结合才能实现高效存储。

相关推荐
ShiMetaPi2 小时前
BM1684X平台:Qwen-2-5-VL图像/视频识别应用
人工智能·音视频·边缘计算·bm1684x·shimetapi
lqg_zone8 小时前
基于 Socket.IO 实现 WebRTC 音视频通话与实时聊天系统(Spring Boot 后端实现)
spring boot·音视频·webrtc
第六五1 天前
大型音频语言模型论文总结
人工智能·语言模型·音视频
Marvin13111 天前
LiveQing视频RTMP推流视频点播服务功能-云端录像支持按时间段下载录像时间段下载视频mp4
音视频·自定义时间段·视频下载mp4·监控视频下载mp4·时间段下载mp4·liveqing视频平台
井云AI1 天前
井云科技交互数字人:用技术普惠重构智能交互新范式
音视频·实时音视频·数字人·交互数字人·数字人口播·井云科技
Marvin13112 天前
LiveQing视频推流点播流媒体常见问题-分屏展示页面如何显示直播间的名称多分屏视频画面监控
网络·音视频·视频分屏监控·liveqing视频流媒体
LetsonH2 天前
⭐CVPR2025 MatAnyone:稳定且精细的视频抠图新框架
人工智能·python·深度学习·计算机视觉·音视频
音视频牛哥2 天前
无人机 × 巡检 × AI识别:一套可复制的超低延迟低空视频感知系统搭建实践
人工智能·音视频·无人机·大牛直播sdk·低空感知·无人机视频回传·ai边缘识别