深度学习日志及可视化过程

一、什么是 TensorBoard?

TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中。TensorBoard 的主要功能包括:

可视化模型的网络架构

跟踪模型指标,如损失和准确性等

检查机器学习工作流程中权重、偏差和其他组件的直方图

显示非表格数据,包括图像、文本和音频

将高维嵌入投影到低维空

二、什么是 wandb?(需要用到外网,也有offline离线模式)

wandb的核心功能就是跟踪训练过程,展示训练流程以供我们观察展示和分析

三、总结wandb和tensorboard

1. 核心功能对比

特性 WandB TensorBoard
开发方 Weights & Biases 公司 Google (TensorFlow 生态)
主要用途 实验跟踪、协作、模型管理 训练过程可视化(TensorFlow 优先)
实时更新 ✅ 支持 ❌ 需手动刷新
协作功能 ✅ 多用户共享、评论、报告生成 ❌ 仅本地或自行搭建服务共享
数据存储 ☁️ 云端(可离线导出) 💻 本地文件(需自行管理)
框架支持 PyTorch、TF、JAX 等(框架无关) TensorFlow(原生)、PyTorch(插件)
超参数记录 ✅ 自动记录 ✅ 需手动配置
模型版本控制 ✅ 集成(可保存模型快照) ❌ 需结合 Git 或其他工具

2. 使用场景推荐

  • 选择 WandB 如果

    • 需要团队协作或远程查看实验结果。

    • 希望自动记录超参数、代码版本、系统指标(如GPU温度)。

    • 需生成精美的共享报告(如论文复现、项目交付)。

  • 选择 TensorBoard 如果

    • 纯本地开发,无需云端功能。

    • 深度依赖 TensorFlow 生态(如 TF Serving 集成)。

    • 对隐私要求极高(数据完全离线)。


3. 代码示例对比

WandB 基础用法
复制代码
import wandb

# 初始化项目
wandb.init(project="my-project", config={"lr": 0.01})

# 记录指标
for epoch in range(100):
    loss = train_step()
    wandb.log({"loss": loss})  # 自动同步到云端

# 保存模型
wandb.save("model.h5")
TensorBoard 基础用法
复制代码
from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter("logs/")  # 本地存储

for epoch in range(100):
    loss = train_step()
    writer.add_scalar("loss", loss, epoch)  # 写入本地文件

writer.close()
# 启动服务:tensorboard --logdir=logs/

4. 优缺点总结

工具 优点 缺点
WandB - 开箱即用的协作功能 - 丰富的仪表盘和报告 - 自动环境捕获 - 免费版有限制(团队人数、存储) - 需联网(可离线模式)
TensorBoard - 完全免费和离线 - 与 TensorFlow 深度集成 - 可扩展性强 - 协作功能弱 - 界面较老旧

5. 如何选择?

  • 科研/团队项目WandB(提升协作效率)。

  • 工业部署/TensorFlow 项目TensorBoard(稳定性优先)。

  • 轻量级实验 → TensorBoard(避免依赖)。

相关推荐
苍何28 分钟前
腾讯重磅开源!混元图像 3.0 图生图真香!
人工智能
千里马也想飞32 分钟前
人工智能在医疗领域的应用与研究论文写作实操:AI辅助快速完成框架+正文创作
人工智能
Rorsion36 分钟前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
勾股导航44 分钟前
K-means
人工智能·机器学习·kmeans
liliangcsdn1 小时前
Diff2Flow中扩散和流匹配的对齐探索
人工智能
SmartBrain1 小时前
战略洞察:以AI为代表的第四次工业革命
人工智能·语言模型·aigc
一个处女座的程序猿1 小时前
AI之Agent之VibeCoding:《Vibe Coding Kills Open Source》翻译与解读
人工智能·开源·vibecoding·氛围编程
Jay Kay1 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
风指引着方向1 小时前
归约操作优化:ops-math 的 Sum/Mean/Max 实现
人工智能·wpf
机器之心1 小时前
英伟达世界模型再进化,一个模型驱动所有机器人!机器人的GPT时刻真正到来
人工智能·openai