深度学习日志及可视化过程

一、什么是 TensorBoard?

TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中。TensorBoard 的主要功能包括:

可视化模型的网络架构

跟踪模型指标,如损失和准确性等

检查机器学习工作流程中权重、偏差和其他组件的直方图

显示非表格数据,包括图像、文本和音频

将高维嵌入投影到低维空

二、什么是 wandb?(需要用到外网,也有offline离线模式)

wandb的核心功能就是跟踪训练过程,展示训练流程以供我们观察展示和分析

三、总结wandb和tensorboard

1. 核心功能对比

特性 WandB TensorBoard
开发方 Weights & Biases 公司 Google (TensorFlow 生态)
主要用途 实验跟踪、协作、模型管理 训练过程可视化(TensorFlow 优先)
实时更新 ✅ 支持 ❌ 需手动刷新
协作功能 ✅ 多用户共享、评论、报告生成 ❌ 仅本地或自行搭建服务共享
数据存储 ☁️ 云端(可离线导出) 💻 本地文件(需自行管理)
框架支持 PyTorch、TF、JAX 等(框架无关) TensorFlow(原生)、PyTorch(插件)
超参数记录 ✅ 自动记录 ✅ 需手动配置
模型版本控制 ✅ 集成(可保存模型快照) ❌ 需结合 Git 或其他工具

2. 使用场景推荐

  • 选择 WandB 如果

    • 需要团队协作或远程查看实验结果。

    • 希望自动记录超参数、代码版本、系统指标(如GPU温度)。

    • 需生成精美的共享报告(如论文复现、项目交付)。

  • 选择 TensorBoard 如果

    • 纯本地开发,无需云端功能。

    • 深度依赖 TensorFlow 生态(如 TF Serving 集成)。

    • 对隐私要求极高(数据完全离线)。


3. 代码示例对比

WandB 基础用法
复制代码
import wandb

# 初始化项目
wandb.init(project="my-project", config={"lr": 0.01})

# 记录指标
for epoch in range(100):
    loss = train_step()
    wandb.log({"loss": loss})  # 自动同步到云端

# 保存模型
wandb.save("model.h5")
TensorBoard 基础用法
复制代码
from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter("logs/")  # 本地存储

for epoch in range(100):
    loss = train_step()
    writer.add_scalar("loss", loss, epoch)  # 写入本地文件

writer.close()
# 启动服务:tensorboard --logdir=logs/

4. 优缺点总结

工具 优点 缺点
WandB - 开箱即用的协作功能 - 丰富的仪表盘和报告 - 自动环境捕获 - 免费版有限制(团队人数、存储) - 需联网(可离线模式)
TensorBoard - 完全免费和离线 - 与 TensorFlow 深度集成 - 可扩展性强 - 协作功能弱 - 界面较老旧

5. 如何选择?

  • 科研/团队项目WandB(提升协作效率)。

  • 工业部署/TensorFlow 项目TensorBoard(稳定性优先)。

  • 轻量级实验 → TensorBoard(避免依赖)。

相关推荐
恒点虚拟仿真25 分钟前
人工智能+虚拟仿真,助推医学检查技术理论与实践结合
人工智能·ai·虚拟仿真·虚拟仿真实验·人工智能+虚拟仿真·医学检查虚拟仿真
cver1231 小时前
垃圾分类检测数据集-15,000 张图片 智能垃圾分类 回收站与环保设施自动化 公共区域清洁监测 环保机器人 水域与自然环境垃圾监测
人工智能·计算机视觉·分类·数据挖掘·机器人·自动化·智慧城市
paid槮1 小时前
机器学习处理文本数据
人工智能·机器学习·easyui
陈敬雷-充电了么-CEO兼CTO1 小时前
OpenAI开源大模型 GPT-OSS 开放权重语言模型解析:技术特性、部署应用及产业影响
人工智能·gpt·ai·语言模型·自然语言处理·chatgpt·大模型
桃源学社(接毕设)1 小时前
基于Django珠宝购物系统设计与实现(LW+源码+讲解+部署)
人工智能·后端·python·django·毕业设计
鹿导的通天塔1 小时前
高级RAG 00:检索增强生成(RAG)简介
人工智能·后端
计算机sci论文精选1 小时前
CVPR 2025丨机器人如何做看懂世界
人工智能·深度学习·机器学习·机器人·github·人机交互·cvpr
Swaggy T1 小时前
自动驾驶决策算法 —— 有限状态机 FSM
linux·人工智能·算法·机器学习·自动驾驶
雪可问春风1 小时前
YOLOv8 训练报错:PyTorch 2.6+ 模型加载兼容性问题解决
人工智能·pytorch·yolo
神齐的小马2 小时前
机器学习 [白板推导](九)[变分推断]
人工智能·机器学习