深度学习日志及可视化过程

一、什么是 TensorBoard?

TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中。TensorBoard 的主要功能包括:

可视化模型的网络架构

跟踪模型指标,如损失和准确性等

检查机器学习工作流程中权重、偏差和其他组件的直方图

显示非表格数据,包括图像、文本和音频

将高维嵌入投影到低维空

二、什么是 wandb?(需要用到外网,也有offline离线模式)

wandb的核心功能就是跟踪训练过程,展示训练流程以供我们观察展示和分析

三、总结wandb和tensorboard

1. 核心功能对比

特性 WandB TensorBoard
开发方 Weights & Biases 公司 Google (TensorFlow 生态)
主要用途 实验跟踪、协作、模型管理 训练过程可视化(TensorFlow 优先)
实时更新 ✅ 支持 ❌ 需手动刷新
协作功能 ✅ 多用户共享、评论、报告生成 ❌ 仅本地或自行搭建服务共享
数据存储 ☁️ 云端(可离线导出) 💻 本地文件(需自行管理)
框架支持 PyTorch、TF、JAX 等(框架无关) TensorFlow(原生)、PyTorch(插件)
超参数记录 ✅ 自动记录 ✅ 需手动配置
模型版本控制 ✅ 集成(可保存模型快照) ❌ 需结合 Git 或其他工具

2. 使用场景推荐

  • 选择 WandB 如果

    • 需要团队协作或远程查看实验结果。

    • 希望自动记录超参数、代码版本、系统指标(如GPU温度)。

    • 需生成精美的共享报告(如论文复现、项目交付)。

  • 选择 TensorBoard 如果

    • 纯本地开发,无需云端功能。

    • 深度依赖 TensorFlow 生态(如 TF Serving 集成)。

    • 对隐私要求极高(数据完全离线)。


3. 代码示例对比

WandB 基础用法
复制代码
import wandb

# 初始化项目
wandb.init(project="my-project", config={"lr": 0.01})

# 记录指标
for epoch in range(100):
    loss = train_step()
    wandb.log({"loss": loss})  # 自动同步到云端

# 保存模型
wandb.save("model.h5")
TensorBoard 基础用法
复制代码
from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter("logs/")  # 本地存储

for epoch in range(100):
    loss = train_step()
    writer.add_scalar("loss", loss, epoch)  # 写入本地文件

writer.close()
# 启动服务:tensorboard --logdir=logs/

4. 优缺点总结

工具 优点 缺点
WandB - 开箱即用的协作功能 - 丰富的仪表盘和报告 - 自动环境捕获 - 免费版有限制(团队人数、存储) - 需联网(可离线模式)
TensorBoard - 完全免费和离线 - 与 TensorFlow 深度集成 - 可扩展性强 - 协作功能弱 - 界面较老旧

5. 如何选择?

  • 科研/团队项目WandB(提升协作效率)。

  • 工业部署/TensorFlow 项目TensorBoard(稳定性优先)。

  • 轻量级实验 → TensorBoard(避免依赖)。

相关推荐
cdming12 分钟前
微软Win11双AI功能来袭:“AI管家”+聊天机器人重构桌面交互体验
人工智能·microsoft·机器人
罗西的思考34 分钟前
[Agent] ACE(Agentic Context Engineering)和Dynamic Cheatsheet学习笔记
人工智能·机器学习
fantasy_arch41 分钟前
transformer-注意力评分函数
人工智能·深度学习·transformer
逐云者12341 分钟前
自动驾驶强化学习的价值对齐:奖励函数设计的艺术与科学
人工智能·机器学习·自动驾驶·自动驾驶奖励函数·奖励函数黑客防范·智能驾驶价值对齐
BreezeJuvenile1 小时前
深度学习实验一之图像特征提取和深度学习训练数据标注
人工智能·深度学习
Dev7z1 小时前
舌苔舌象分类图像数据集
人工智能·分类·数据挖掘
万俟淋曦1 小时前
【论文速递】2025年第30周(Jul-20-26)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·robotics·具身智能
高洁011 小时前
大模型-高效优化技术全景解析:微调 量化 剪枝 梯度裁剪与蒸馏 下
人工智能·python·深度学习·神经网络·知识图谱
CoookeCola1 小时前
MovieNet(A holistic dataset for movie understanding) :面向电影理解的多模态综合数据集与工具链
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
张艾拉 Fun AI Everyday1 小时前
Gartner 2025年新兴技术成熟度曲线
人工智能