大模型能力评测方式很多?

nine|践行一人公司

正在记录从 0 到 1 的踩坑与突破,交付想法到产品的全过程。

AI评测非单一分数比拼,而是多维度、多方法的系统工程。其核心框架可拆解为基础维度、主流基准与关键方法,共同构成模型能力的"CT扫描"系统。

一、评测的三大基础维度

  • 参照源:分参考式(有标准答案,如准确率、BLEU)与非参考式(依赖判官或规则,如人类偏好、单元测试)。
  • 交互模式:覆盖静态单轮问答、多轮对话、工具调用、长上下文处理等全场景。
  • 评分粒度:从选择题准确率到思维链质量,再到系统延迟/成本,形成多层级指标网。
graph TD A[评测基础维度] --> B[参照源
参考式/非参考式] A --> C[交互模式
静态/多轮/工具调用] A --> D[评分粒度
结果/过程/系统指标]

二、主流基准与核心指标

  • 通用能力:MMLU(57学科准确率)、HellaSwag(常识推理)为标杆,需控制数据泄漏与温度参数。
  • 专业领域:数学看GSM8K(思维链准确率)、MATH(竞赛题通过率);代码测HumanEval(pass@k单元测试通过率)、SWE-bench(issue修复率)。
  • 安全与效率:TruthfulQA(事实性正确率)、ToxiGen(有害内容拒答率);系统指标含延迟(TTFT/p95)、成本($/1k tok)。
  • 多模态:MMMU(图文理解准确率)、DocVQA(文档问答)需兼顾OCR质量与跨模态一致性。

三、关键方法与实践要点

  • 人类偏好评测:Chatbot Arena的双盲成对比较+Elo评分(R'=R+K(S-E))为黄金标准,需规避位置/冗长偏见。
  • AI辅助评测:GPT-4等LLM-as-a-Judge与人类一致性达80%+,但需校准冗长偏好与自偏误。
  • 统计设计:固定seed、控制算力公平(同self-consistency样本数)、报告95%置信区间,杜绝数据泄漏(时间切分/去重)。

AI评测的核心是"场景匹配":通用能力看MMLU+人类偏好,代码能力信SWE-bench+pass@k,安全侧重拒答率与校准度。唯有多维指标联动,才能勾勒模型真实能力画像。

相关推荐
聚客AI8 小时前
🌈从实验室到生产线:LLM工程师必须掌握的八大实战技能
人工智能·llm·agent
ObjectX前端实验室8 小时前
LLM的生态与能力边界&一个基本对话的实现
前端·langchain·llm
ObjectX前端实验室9 小时前
从零到一:系统化掌握大模型应用开发【目录】
前端·llm·agent
扫地的小何尚9 小时前
R²D²深度解析:NVIDIA三大神经网络突破如何变革机器人学习
神经网络·r语言·机器人·llm·gpu·nvidia
万事可爱^12 小时前
如何在云服务器上使用LLaMA Factory框架微调模型
运维·服务器·llm·sft·llama·模型微调·ai agent
GPUStack13 小时前
昇腾多机推理极速上手:10倍简化的 DeepSeek R1 超大规模模型部署
大模型·llm·昇腾·npu·分布式推理
yunxi_0514 小时前
我用 Elasticsearch 做 RAG 检索的一些“土经验”
后端·llm
mCell1 天前
长期以来我对 LLM 的误解
深度学习·llm·ollama
扫地的小何尚1 天前
深度解析 CUDA-QX 0.4 加速 QEC 与求解器库
人工智能·语言模型·llm·gpu·量子计算·nvidia·cuda