大模型能力评测方式很多?

nine|践行一人公司

正在记录从 0 到 1 的踩坑与突破,交付想法到产品的全过程。

AI评测非单一分数比拼,而是多维度、多方法的系统工程。其核心框架可拆解为基础维度、主流基准与关键方法,共同构成模型能力的"CT扫描"系统。

一、评测的三大基础维度

  • 参照源:分参考式(有标准答案,如准确率、BLEU)与非参考式(依赖判官或规则,如人类偏好、单元测试)。
  • 交互模式:覆盖静态单轮问答、多轮对话、工具调用、长上下文处理等全场景。
  • 评分粒度:从选择题准确率到思维链质量,再到系统延迟/成本,形成多层级指标网。
graph TD A[评测基础维度] --> B[参照源
参考式/非参考式] A --> C[交互模式
静态/多轮/工具调用] A --> D[评分粒度
结果/过程/系统指标]

二、主流基准与核心指标

  • 通用能力:MMLU(57学科准确率)、HellaSwag(常识推理)为标杆,需控制数据泄漏与温度参数。
  • 专业领域:数学看GSM8K(思维链准确率)、MATH(竞赛题通过率);代码测HumanEval(pass@k单元测试通过率)、SWE-bench(issue修复率)。
  • 安全与效率:TruthfulQA(事实性正确率)、ToxiGen(有害内容拒答率);系统指标含延迟(TTFT/p95)、成本($/1k tok)。
  • 多模态:MMMU(图文理解准确率)、DocVQA(文档问答)需兼顾OCR质量与跨模态一致性。

三、关键方法与实践要点

  • 人类偏好评测:Chatbot Arena的双盲成对比较+Elo评分(R'=R+K(S-E))为黄金标准,需规避位置/冗长偏见。
  • AI辅助评测:GPT-4等LLM-as-a-Judge与人类一致性达80%+,但需校准冗长偏好与自偏误。
  • 统计设计:固定seed、控制算力公平(同self-consistency样本数)、报告95%置信区间,杜绝数据泄漏(时间切分/去重)。

AI评测的核心是"场景匹配":通用能力看MMLU+人类偏好,代码能力信SWE-bench+pass@k,安全侧重拒答率与校准度。唯有多维指标联动,才能勾勒模型真实能力画像。

相关推荐
Kratos开源社区4 小时前
跟 Blades 学 Agent 设计 - 01 用“提示词链”让你的 AI 助手变身超级特工
llm·go·agent
山顶夕景6 小时前
【RLVR】GRPO中奖励函数的设计逻辑
llm·强化学习·rl·奖励函数·reward
在未来等你7 小时前
AI Agent设计模式 Day 2:Plan-and-Execute模式:先规划后执行的智能策略
设计模式·llm·react·ai agent·plan-and-execute
有意义8 小时前
从零搭建:json-server+Bootstrap+OpenAI 全栈 AI 小项目
前端·后端·llm
数据智能老司机10 小时前
构建多智能体系统——使用工具
llm·agent·mcp
数据智能老司机11 小时前
构建一个 DeepSeek 模型——通过键值缓存(Key-Value Cache, KV Cache)解决推理瓶颈
架构·llm·deepseek
在未来等你13 小时前
AI Agent设计模式 Day 3:Self-Ask模式:自我提问驱动的推理链
设计模式·llm·react·ai agent·plan-and-execute
Larcher1 天前
新手也能学会,100行代码玩AI LOGO
前端·llm·html
架构师日志1 天前
使用大模型+LangExtract从复杂文本提取结构化数据(三)——提取表格列表类型数据
llm
智泊AI1 天前
AI圈炸锅了!大模型的下一片蓝海,彻底爆发了!
llm