深度解析AI大模型【架构→训练→推理】核心技术全景图

本文较长,建议点赞收藏,以免遗失。更多AI大模型开发学习视频籽料,

都在这>>Github<<

最近看到很多人对MCP/RAG/ Agent /Cache/Fine-tuning/Prompt/GraphRAG 都分不清楚,今天我将通过图文,为你讲解其核心技术与实践原理,希望对你们有所帮助。

一、大模型核心架构演进

1.1 函数调用 & MCP(模型上下文协议)

  • ​传统方案​:预定义工具链导致灵活性差,错误传播风险高
  • ​MCP突破​
  • 动态上下文感知路由(Context-Aware Routing)
  • 工具并行调用机制(Parallel Tool Invocation)
  • 自修复工作流(Self-Correcting Pipeline)

1.2 Transformer到MoE架构进化

  • ​核心创新​
  • 稀疏激活:每次推理仅激活2-4个专家(如Mixtral 8x7B)
  • 专家专业化:每个专家学习不同领域知识(代码/数学/语言)
  • 吞吐量提升:相同参数量下推理速度提升6倍

二、大模型训练技术全景

2.1 四阶段训练体系

阶段 数据规模 关键技术 目标输出
预训练 TB级语料 Megatron-DeepSpeed 基础语言模型
指令微调 百万级SFT LoRA/QLoRA 任务响应能力
偏好对齐 万级偏好对 DPO/ORPO 价值观对齐
推理优化 合成数据 RFT/Rejection Sampling 复杂推理能力

ps:这里顺便给大家分享一个大模型微调的实战导图,希望能帮助大家更好的学习,粉丝朋友自行领取: 《大模型微调实战项目思维导图》

2.2 蒸馏技术应用

LLM 不仅从原始文本中学习;它们也相互学习:

  • Llama 4 Scout 和 Maverick 是使用 Llama 4 Behemoth 训练的。
  • Gemma 2 和 3 是使用谷歌专有的 Gemini 训练的。
  • 蒸馏帮助我们做到这一点,下面的图描绘了三种流行的技术。

三、RAG架构演进路线

3.1 传统RAG vs 智能体RAG

3.2 HyDE解决方案

  • ​效果对比​
  • HotpotQA数据集:传统RAG准确率58% → HyDE达到76%
  • 关键机理:通过假设文档弥合问题与答案的语义鸿沟

四、推理优化关键技术

4.1 KV缓存机制

  • ​性能收益​
  • 128K上下文:推理延迟降低4.8倍
  • 显存占用减少37%(通过FP8缓存量化)

4.2 提示工程三大技术

  1. ​思维链(CoT)​
  2. ​自洽性(Self-Consistency)​:生成多条推理路径 → 投票选择最佳答案
  3. ​思维树(ToT)​

五、智能体系统设计框架

级别 类型 核心能力 示例场景
L1 响应型 单轮问答 ChatGPT基础模式
L2 函数型 工具调用 GitHub Copilot
L3 流程型 多工具编排 AutoGPT
L4 目标型 动态规划+自我验证 Devin开发助手
L5 自治型 长期记忆+环境交互 工业控制系统

5.2 智能体设计模式

AI 智能体行为允许 LLM 通过自我评估、规划和协作来完善其输出!

这张图描绘了构建 AI 智能体时采用的 5 种最流行设计模式。

六、技术架构选择指南

  1. ​数据敏感型场景​:Fine-tuning + 私有化部署
  2. ​知识密集型场景​:GraphRAG + 知识图谱
  3. ​高并发场景​:MoE架构 + KV缓存优化
  4. ​复杂任务场景​:Agent架构 + 多工具编排

作者总结: 未来通过MCP协议实现智能体工具动态编排,结合GraphRAG解决复杂知识推理,配合MoE架构提升推理效率,将会形成新一代大模型应用开发范式。各位朋友可根据具体场景需求,组合这些技术构建高性能AI系统。

更多AI大模型开发学习视频籽料,都在这>>Github<<

相关推荐
deephub1 小时前
让 AI 智能体学会自我进化:Agent Lightning 实战入门
人工智能·深度学习·大语言模型·agent
dawdo2222 小时前
自己动手从头开始编写LLM推理引擎(9)-KV缓存实现和优化
缓存·llm·transformer·qwen·kv cache
良许Linux2 小时前
DSP的选型和应用
后端·stm32·单片机·程序员·嵌入式
小杨互联网17 小时前
LLM应用三大隐形风险与防护方案详解
llm
小汤圆不甜不要钱21 小时前
「Datawhale」RAG技术全栈指南 Task 5
python·llm·rag
五点钟科技1 天前
Deepseek-OCR:《DeepSeek-OCR: Contexts Optical Compression》 论文要点解读
人工智能·llm·ocr·论文·大语言模型·deepseek·deepseek-ocr
阿杰学AI1 天前
AI核心知识75——大语言模型之MAS (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·agent·多智能体协作·mas
AndrewHZ1 天前
【AI黑话日日新】什么是AI智能体?
人工智能·算法·语言模型·大模型·llm·ai智能体
laplace01231 天前
Clawdbot 部署到飞书(飞连)使用教程(完整版)
人工智能·笔记·agent·rag·clawdbot
山顶夕景1 天前
【LLM】多模态智能体Kimi-K2.5模型
llm·agent·多模态