⭐CVPR2025 RigGS:从 2D 视频到可编辑 3D 关节物体的建模新范式

⭐CVPR 顶会论文解读|RigGS:从 2D 视频到可编辑 3D 关节物体的建模新范式

📄论文题目:RigGS: Rigging of 3D Gaussians for Modeling Articulated Objects in Videos

✍️作者及机构:Yuxin Yao、Zhi Deng、Junhui Hou(香港城市大学、中国科学技术大学)

🧩面临问题:当前关节物体建模存在诸多局限。一方面,传统方法依赖通用骨架模板(如 SMPL 用于人体、MANO 用于手部),无法处理带配饰的人体、个性化手套的手部等非标准化物体;另一方面,现有骨架提取方法或依赖艺术家设计的骨架监督、仅能处理对称物体,或提取的骨架过于密集,且部分方法依赖 3D 重建质量,在 3D 数据有限时实用性不足12。

🎯创新点及其具体研究方法:

1️⃣ 骨架感知节点控制变形场:结合 3D 高斯作为基准形状表示,设计骨架感知节点控制的变形场,使基准 3D 高斯表示随时间变形以初始化建模过程,同时生成带骨架语义的候选节点。通过渲染损失、ARAP 局部刚性损失和 2D 骨架投影约束损失优化,实现动态物体重建与候选骨架点的同步获取367。

2️⃣ 启发式 3D 骨架构建算法:基于初始重建结果选择代表平均形状的时间帧作为新基准,从骨架感知节点中通过最远点采样获取均匀分布节点,构建最小生成树形成密集骨架,再结合几何、语义(利用 DINOv2 特征)和运动信息进行简化,通过添加端点、 junction 点和几何转折点,最终形成稀疏骨架树489。

3️⃣ 骨架驱动动态模型:设计基于线性混合蒙皮(LBS)的可学习粗变形,通过学习蒙皮权重将骨架与 3D 高斯绑定;同时引入姿态依赖的细节变形模块,利用 MLP 学习高斯中心位置偏移以捕捉精细变形。通过渲染损失、骨架投影损失、细节正则化损失和身份约束损失优化,实现灵活的新动作生成51011。


相关推荐
esmap1 小时前
ESMAP 智慧消防解决方案:以数字孪生技术构建全域感知消防体系,赋能消防安全管理智能化升级
人工智能·物联网·3d·编辑器·智慧城市
zhooyu2 小时前
C++和OpenGL手搓3D游戏编程(20160207进展和效果)
开发语言·c++·游戏·3d·opengl
听麟9 小时前
HarmonyOS 6.0+ PC端虚拟仿真训练系统开发实战:3D引擎集成与交互联动落地
笔记·深度学习·3d·华为·交互·harmonyos
新缸中之脑9 小时前
30个最好的3D相关AI代理技能
人工智能·3d
多恩Stone9 小时前
【3D AICG 系列-9】Trellis2 推理流程图超详细介绍
人工智能·python·算法·3d·aigc·流程图
多恩Stone11 小时前
【3D AICG 系列-8】PartUV 流程图详解
人工智能·算法·3d·aigc·流程图
多恩Stone1 天前
【3D AICG 系列-6】OmniPart 训练流程梳理
人工智能·pytorch·算法·3d·aigc
晚霞的不甘2 天前
揭秘 CANN 内存管理:如何让大模型在小设备上“轻装上阵”?
前端·数据库·经验分享·flutter·3d
哈__2 天前
CANN加速3D目标检测推理:点云处理与特征金字塔优化
目标检测·3d·目标跟踪
心疼你的一切2 天前
三维创世:CANN加速的实时3D内容生成
数据仓库·深度学习·3d·aigc·cann