⭐CVPR2025 给3D高斯穿 “UV 衣” 框架[特殊字符]

⭐CVPR 顶会突破!给 3D 高斯穿 "UV 衣" 的 UVGS 框架📄

📄论文题目:UVGS: Reimagining Unstructured 3D Gaussian Splatting using UV Mapping

✍️作者及机构:Aashish Rai 等(布朗大学 + Meta Reality Labs)

💻代码链接:https://aashishrai3799.github.io/uvgs

🧩面临问题: 3D 高斯渲染(3DGS)虽渲染快、质量高,但生成任务长期受限!核心痛点在于:高斯基元是离散无结构的,缺乏空间顺序,像 "散乱的点";存在置换不变性(点打乱顺序仍为同一物体),导致 2D 大模型(如 diffusion、VAE)无法直接适配;现有方法或依赖体素 / 三平面(质量低),或直接预测属性(计算成本高),实用性拉胯🔋

🎯创新点及其具体研究方法:

1️⃣ UVGS:给 3D 高斯贴 "2D 结构标签"核心思路:通过球面映射将无结构 3D 高斯转化为有序 UV 图。研究方法:将每个高斯的位置、旋转、尺度、颜色、不透明度等 14 个属性,基于球面坐标(方位角、极角)映射到 2D 网格,形成 14 通道 UVGS 图。解决置换不变性,使局部 / 全局高斯都有固定对应关系,让 CNN 可直接提取空间特征🔍

2️⃣ Super UVGS:3 通道压缩适配 2D 大模型,核心思路:将 14 通道 UVGS 压缩为 3 通道,无缝对接预训练 2D 模型。研究方法:设计多分支 CNN 网络,分位置、变换、外观三个分支单独处理异质属性,再通过中央分支融合为 3 通道图。无需额外训练,即可直接兼容 VAE、diffusion 等模型,优化存储和计算效率💾

3️⃣ 解锁 3DGS 新应用场景,核心思路:基于 UVGS 和 Super UVGS 拓展 3D 生成任务边界。研究方法:压缩:用图像自编码器实现 99.5% 超高压缩率;生成:训练 diffusion 模型直接生成 Super UVGS,再转回 3D 高斯,支持无条件 / 文本条件生成;修复:利用 diffusion 的去噪能力补全缺失高斯基元,实现 3DGSinpainting🖌️



相关推荐
咔咔一顿操作8 小时前
第七章 Cesium 3D 粒子烟花效果案例解析:从原理到完整代码
人工智能·3d·信息可视化·cesium
多恩Stone9 小时前
【3DV 进阶-2】Hunyuan3D2.1 训练代码详细理解下-数据读取流程
人工智能·python·算法·3d·aigc
星空彡11 小时前
MCP学习一——UV安装使用教程
uv·uv工具使用
愈努力俞幸运11 小时前
uv教程 虚拟环境
python·uv
心一信息11 小时前
让 3D 动画在浏览器中“活”起来!
3d
云飞云共享云桌面12 小时前
工厂办公环境如何实现一台服务器多人共享办公
运维·服务器·网络·数据库·3d
letwant1 天前
uv使用指南
uv
一碗白开水一1 天前
【论文阅读】Far3D: Expanding the Horizon for Surround-view 3D Object Detection
论文阅读·人工智能·深度学习·算法·目标检测·计算机视觉·3d
接着奏乐接着舞。1 天前
3D地球可视化教程 - 第1篇:基础地球渲染系统
前端·javascript·vue.js·3d·three.js
XiaoMu_0011 天前
基于Node.js和Three.js的3D模型网页预览器
javascript·3d·node.js