语义分割目前还是研究热点吗?

语义分割模型复现、改进与对比实验

提供一系列语义分割模型的复现、改进以及对比实验,欢迎进行深入交流与探讨。如有详细需求,请随时联系。

1. 支持的语义分割模型

可复现并改进以下主流语义分割模型:

  • DeepLabV3+
  • PSPNet
  • HRNet
  • SegFormer
  • U-Net
  • U^2-Net
  • CeNet
  • ERFNet
  • HCANet
  • HiFormer
  • UI-Unet
  • nnU-Net
  • SAUNet
  • UNext
  • DSCNet
  • CMUNext
  • UKAN
    以及其他相关模型。可以根据您的需求,提供所需的数据集进行模型训练与预测。

2. 主干网络的改进与选择

提供多种主干网络改进方案,包括但不限于以下架构:

  • 轻量化主干网络:如基于 DeepLabV3+、U-Net、Transformer 的轻量化改进。
  • 主干网络架构选择:包括 ResNet 系列、MobileNet 系列、EfficientNet 系列、ViT 系列、GhostNet 系列、Vision Mamba 系列、QFormer、Res2Net、FCANet、DeFormer、DPN、Channel ViT、Agent Attention、Conformer、SPPNet、StarNet、Swin Transformer、BatchFormer、Convolutional KAN、SpikFormer(脉冲神经网络)、胶囊网络(Capsule Networks)、B-COS 神经网络等。
  • 对比实验:针对不同主干网络,进行全面对比实验,分析其对语义分割模型性能的影响。

3. 可选卷积模块

我们支持多种卷积模块的选择与应用:

  • 深度可分离卷积(Depthwise Separable Convolution)
  • Ghost模块(Ghost Module)
  • Conv-Kan
  • 动态卷积(Dynamic Convolution)
  • 可变形卷积(Deformable Convolution)
  • 分组卷积(Group Convolution)
  • 部分卷积(Partial Convolution)
  • 动态蛇形卷积(Dynamic Snake Convolution)
  • 大核卷积(Large Kernel Convolution)
  • 膨胀卷积(Dilated Convolution)
    等多种卷积模块,可根据需求进行灵活组合,提升模型性能。

4. 可选注意力机制

支持多种注意力机制的集成,以提高模型的表现力:

  • ECANet
  • SENet
  • Channel Attention(CA)
  • Convolutional Block Attention Module(CBAM)
  • Pixel-wise Attention(PSA)
  • Self-Gating Enhancement (SGE)
  • Spatial Knowledge Attention (SKA)
  • Residual Channel-wise Attention (RCBA)
  • Residual Channel-wise Attention (RCCA)
  • Enhanced Multi-Scale Attention (EMSA)
  • Global Attention Mechanism (GAM)
  • Bottleneck Attention Module (BAM)
  • Adaptive Feature Normalization Block (AFNB)
  • Adaptive Spatial Feature Fusion (ASFF)
  • Feature Attention Network (FAN)
  • Spatial Transformer Network (STN)
  • SWiFTFormer
  • BiFormer
  • Squeeze-and-Excitation (SE)
  • Feature Channel Attention (FCA)
  • Cross Pixel-wise Channel Attention (CPCA)
  • MUSE (Multi-scale Uncertainty and Saliency Enhancement)
  • RepConv
  • Conv2Former
  • Multi-Dimensional Transformer Attention (MDTA)
    等先进的注意力机制,可灵活选择并集成到分割网络中,进一步提高模型的注意力集中能力与性能。

附加服务

  • 提供网盘链接,方便模型和数据集的下载。
  • 可提供正式发票。
相关推荐
强盛小灵通专卖员16 天前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
淘淘学术19 天前
SCI录用后一般几个月检索?
sci·学术
欧亚学术20 天前
突发!刚刚新增17本期刊被剔除!
数据库·论文·sci·期刊·博士·scopus·发表
极客小云20 天前
【IEEE 论文接收后 proof(校样) 全流程实例讲解】
sci·ieee
强盛小灵通专卖员23 天前
airsim无人机仿真深度强化学习自动避障辅导
人工智能·无人机·sci·深度强化学习·airsim·自动避障·小论文
强盛小灵通专卖员23 天前
船舶轨迹预测实验辅导一站式
人工智能·深度学习·sci·ei会议·船舶轨迹预测·ais数据
淘淘学术24 天前
SCI有错误会撤稿吗?
sci·学术
学术小白人1 个月前
JPCS出版| 往届检索可查 | 第四届机械工程与先进制造智能化技术研讨会(MEAMIT 2026)
大数据·人工智能·搜索引擎·能源·制造·ei会议·rdlink研发家
AndrewHZ2 个月前
【图像处理基石】有没有推荐的图像处理方向的期刊SCI?
图像处理·sci·tpami·期刊·遥感图像·tip·tgrs
强盛小灵通专卖员2 个月前
基于RT-DETR的电力设备过热故障红外图像检测
人工智能·目标检测·sci·研究生·小论文·大论文·延毕