Spark引擎中RDD的性质

RDD(Resilient Distributed Dataset,弹性分布式数据集)是SparkCore提供的核心抽象。一个RDD在逻辑上抽象地代表了一个HDFS文件或数据库中的表,但RDD是被分区的,每个分区分布在不同的节点上,从而并行执行。

RDD算子包括:

  • 转换算子:也叫计算,有flatmap、map等;
  • 缓存算子:这个有的不叫算子,叫持久化,使用cache方法;
  • 行动算子:有collect等。RDD是懒执行的,没有行动算子,前面的所有算子不会执行(但是会加载进来,加载也会执行其中的代码,例如打印代码)。
  • 输出算子:如saveAsFile等。

Spark中对于一个RDD执行多次算子的默认原理是:每次你对一个RDD执行一个算子操作时,都会重新从源头处计算一遍,计算出那个RDD来,然后再对这个RDD执行你的算子操作。例如:A->B->C->D,然后如果需要C->E就需要A->B->C->E这一套计算,这种方式的性能是很差的。如果C重复使用可以做持久化,也就是做缓存算子。

RDD通常通过HDFS文件或Hive表创建,也可以通过数据库表或应用程序的集合(例如Scala代码)来创建。

RDD的性质如下:

  • 不可变性:每经过一次算子生成一个新的RDD,不是对之前的做改变,RDD理解成逻辑的概念;
  • 可分区性:类似MapReduce中多个Map任务并行度,有默认分区也可自定义(根据集群性能来确定分区);
  • 弹性:包括:
    1. 存储弹性:内存与磁盘的自动切换,RDD默认存放在内存中,但内存容量不足时,Spark会自动将RDD数据写入磁盘,用户不用去管这些,也就是对用户透明。这就是RDD的弹性;
    2. 容错的弹性:数据丢失可自动恢复,RDD的一套算子是一个血统,也就是血统关系,知道每个算子的位置。假如一个节点的RDD Partition失败或宕掉,RDD会通过数据来源重新计算该Partition,这对使用者是透明的);
    3. 计算的弹性:计算出错重试机制;
    4. 分片弹性:根据需求重新分片,即分区。

总之,RDD 是一个 分布式、不可变、带血统的对象集合,支持 延迟计算 和 容错恢复,是 Spark 高层抽象的基础。

相关推荐
Light601 小时前
点燃变革:领码SPARK融合平台如何重塑OA,开启企业智慧协同新纪元?
大数据·分布式·spark
写代码的【黑咖啡】2 小时前
如何在大数据数仓中搭建数据集市
大数据·分布式·spark
beijingliushao11 小时前
103-Spark之Standalone环境测试
大数据·ajax·spark
beijingliushao12 小时前
102-Spark之Standalone环境安装步骤-2
大数据·分布式·spark
青云交15 小时前
Java 大视界 -- Java 大数据机器学习模型在金融风险管理体系构建与风险防范能力提升中的应用(435)
java·大数据·机器学习·spark·模型可解释性·金融风控·实时风控
小辉懂编程19 小时前
Spark sql 常用时间函数 to_date ,datediff
大数据·sql·spark
计算机毕业编程指导师2 天前
【Python大数据选题】基于Spark+Django的电影评分人气数据可视化分析系统源码 毕业设计 选题推荐 毕设选题 数据分析 机器学习
大数据·hadoop·python·计算机·spark·django·电影评分人气
AI_56782 天前
从“内存溢出”到“稳定运行”——Spark OOM的终极解决方案
人工智能·spark
Fcy6482 天前
C++ set和multiset的使用
开发语言·c++·stl·map·multimap
B站计算机毕业设计之家2 天前
基于大数据热门旅游景点数据分析可视化平台 数据大屏 Flask框架 Echarts可视化大屏
大数据·爬虫·python·机器学习·数据分析·spark·旅游