使用langgraph创建工作流系列4:人机回环

到目前为止chatbot的工作流都是用户输入后等待应答,但有些情况下需要人工干预:

1)因为大模型本身不是可靠的,基于大模型的智能体也是不可靠的,需要人工输入以完成符合要求的任务

2)在工作流执行过程中,需要人工审核、修改等操作

在智能体语境下的人工干预也成为人机回环(human-in-the-loop)。langgraph的持久化层借助检查点支持人机回环的工作流。

在工作流执行过程中,在节点内部调用interrupt将暂停工作流的执行,用户完成处理后,可以从暂停点回复执行,并且可以获得用户输入的数据。

本文仍基于使用langgraph创建工作流系列3:增加记忆-CSDN博客中的chatbot构建人机回环的chatbot。

1.增加工具

from typing import Annotated

from typing_extensions import TypedDict

from langgraph.graph import StateGraph, START, END

from langgraph.graph.message import add_messages

from langchain_openai import ChatOpenAI

from langgraph.prebuilt import ToolNode, tools_condition#支持工具调用

from langgraph.types import Command, interrupt#引入Command和interrupte支持人机回环

class State(TypedDict):

messages: Annotated[list, add_messages]

graph_builder = StateGraph(State)

llm = ChatOpenAI(

model = 'qwen-plus',

api_key = "sk-27cd7fd64e5a4c82a71f879efaebc40e",

base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1")

#新增加支持人机回环的工具

@tool def human_assistance(query: str) -> str:

"""请求用户输入"""

human_response = interrupt({"query": query})

return human_response["data"]

tools = [human_assistance]

llm_with_tools = llm.bind_tools(tools)

tool_node = ToolNode(tools=tools) #生成工具节点

graph_builder.add_node("tools", tools) #把工具节点增加到工作流图中

def chatbot(state: State):

return {"messages": [llm.invoke(state["messages"])]}

graph_builder.add_node("chatbot", chatbot)

graph_builder.add_conditional_edges( "chatbot", tools_condition, )

graph_builder.add_edge(START, "chatbot")

graph_builder.add_edge("chatbot", END)

graph = graph_builder.compile(checkpointer=memory)

2.触发用户介入

输入一个问题,触发用户介入,也就是调用新增的human_assistant方法。

user_input = "I need some expert guidance for building an AI agent. Could you request assistance for me?"

config = {"configurable": {"thread_id": "1"}}

events = graph.stream(

{"messages": [{"role": "user", "content": user_input}]},

config,

stream_mode="values",

)

for event in events:

if "messages" in event:

event["messages"][-1].pretty_print()

返回数据如下。可见大模型指示调用human_assiatant,调用参数为原始问题。

================================ Human Message =================================

I need some expert guidance for building an AI agent. Could you request assistance for me?

================================== Ai Message ==================================

Tool Calls:

human_assistance (call_44b1fdebb102451faf8151)

Call ID: call_44b1fdebb102451faf8151

Args:

query: I need some expert guidance for building an AI agent. Could you request assistance for me?

查看工作流下一个节点:

snapshot = graph.get_state(config)

snapshot.next

输出为('tools",),可见工作流暂停在tools节点,也就是要调用human_assistant。等待用户介入:

('tools',)

3.模拟用户输入,恢复工作流执行

用用户输入构造一个Command对象,然后用Command作为参数调用graph.stream

#这里的Command对象很简单,可以根据实际需要构造

human_response = ( "We, the experts are here to help! We'd recommend you check out LangGraph to build your agent." " It's much more reliable and extensible than simple autonomous agents." )

#用用户输入包装一个Command对象,设置resume

human_command = Command(resume={"data": human_response})

events = graph.stream(human_command, config, stream_mode="values")

for event in events:

if "messages" in event: event["messages"][-1].pretty_print()

基于用户输出chatbot调用大模型后的输出如下:

================================== Ai Message ==================================

Tool Calls:

human_assistance (call_44b1fdebb102451faf8151)

Call ID: call_44b1fdebb102451faf8151

Args:

query: I need some expert guidance for building an AI agent. Could you request assistance for me?

================================= Tool Message =================================

Name: human_assistance

We, the experts are here to help! We'd recommend you check out LangGraph to build your agent. It's much more reliable and extensible than simple autonomous agents.

相关推荐
ZHOU_WUYI27 分钟前
AgentScope RAG 示例指南
agent·rag
hzp66641 分钟前
Magnus:面向大规模机器学习工作负载的综合数据管理方法
人工智能·深度学习·机器学习·大模型·llm·数据湖·大数据存储
尽兴-15 小时前
【10 分钟!M4 Mac mini 离线部署「私有 ChatGPT」完整实录】
macos·ai·chatgpt·大模型·ollama·私有化
桃子叔叔16 小时前
从0到1讲解大模型中的关键步骤(一)分词、词性标注、命名实体识别
人工智能·大模型·多模态
大模型教程21 小时前
几十行代码搭建顶级RAG系统,UltraRAG 2.0,低代码玩转复杂推理流程
程序员·llm·agent
大模型教程21 小时前
挖到宝了,GitHub 55.1k Strar! LLaMA Factory:大语言模型微调的瑞士军刀
程序员·llm·agent
AI大模型1 天前
美亚 4.6 星评,从零到生产:高分神书《AI Engineering》带你解锁大模型应用开发!
程序员·llm·agent
搞科研的小刘选手1 天前
【大会邀请】2025年AI驱动下:业务转型和数据科学创新国际学术会议(ICBTDS 2025)
人工智能·物联网·大模型·智慧城市·数据科学·ai驱动·计算科学
sight-ai2 天前
超越基础:SightAI 智能路由与多模型选择实战
人工智能·开源·大模型·api
字节跳动数据平台2 天前
火山引擎Data Agent再拓新场景,重磅推出用户研究Agent
agent