【面试题】 如何处理中文分词?

一句话金句: 跳过传统分词,让模型自己学。

通俗解释:

  • 传统方法 (过时): 先用一个外部工具(如结巴分词)把句子切成词(如 ["我", "喜欢", "机器学习"]),再喂给模型。风险是分词一旦错了,模型后面全错
  • 现代方法 (主流): 直接把中文句子看成是由一个个汉字组成的序列 ,然后对这个汉字序列应用BPE或WordPiece等子词算法。
    • 模型会自己学会哪些字经常在一起出现,应该组合成一个语义单元(比如"机器学习"可能会被模型组合在一起)。
    • 这种方法避免了传统分词的错误传递,更加灵活有效。

面试得分点:

  • 指出传统方法的误差传播弊端。
  • 强调所有主流模型(BERT、GPT等)现在都直接将汉字作为基本输入单位

相关推荐
Rabbit_QL19 分钟前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
C嘎嘎嵌入式开发9 小时前
NLP 入门:从原理到实战的个人经验总结
人工智能·python·自然语言处理·nlp
阿杰学AI11 小时前
AI核心知识61——大语言模型之Embedding (简洁且通俗易懂版)
人工智能·机器学习·ai·语言模型·自然语言处理·embedding·词向量
渡我白衣14 小时前
导论:什么是机器学习?——破除迷思,建立全景地图
人工智能·深度学习·神经网络·目标检测·microsoft·机器学习·自然语言处理
喜欢吃豆15 小时前
大语言模型(LLM)全栈技术深度综述:理论、系统与工程实践
人工智能·语言模型·自然语言处理·大模型
2401_8414956415 小时前
【自然语言处理】自然语言理解的 “问题识别之术”
人工智能·自然语言处理·情感分类·决策·自动问答·自然语言理解·多源信息
阿杰学AI15 小时前
AI核心知识60——大语言模型之NLP(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·nlp·aigc·agi
余俊晖1 天前
使用Agent做本体匹配的架构设计
人工智能·语言模型·自然语言处理
Hcoco_me1 天前
LLM(Large Language Model)系统学习路线清单
人工智能·算法·自然语言处理·数据挖掘·聚类
LiYingL1 天前
TRACEALIGN:追踪大规模语言模型对齐漂移的原因和保护措施
人工智能·语言模型·自然语言处理