OpenCV 模板匹配

目录

一、模板匹配原理

二、实现步骤

[1. 导入库并读取图像](#1. 导入库并读取图像)

[2. 获取模板尺寸](#2. 获取模板尺寸)

[3. 执行模板匹配](#3. 执行模板匹配)

[4. 查找最佳匹配位置](#4. 查找最佳匹配位置)

[5. 绘制匹配区域并显示结果](#5. 绘制匹配区域并显示结果)

三、完整代码

四、注意事项


在计算机视觉领域,模板匹配是一种简单有效的目标检测方法,它可以在一幅图像中快速查找与模板图像相似的区域。本文将基于 OpenCV 库,介绍如何使用模板匹配技术在图像中定位目标。


一、模板匹配原理

模板匹配的基本原理是:将模板图像在待检测图像上滑动,计算模板与图像中每个对应区域的匹配程度,最终找到匹配度最高的区域。

OpenCV 提供了cv2.matchTemplate()函数实现模板匹配,其主要参数如下:

  • image:待搜索的源图像
  • templ:模板图像
  • method:匹配算法,常用的有 6 种:
    • TM_SQDIFF:平方差匹配法(值越小匹配越好)
    • TM_CCORR:相关匹配法(值越大匹配越好)
    • TM_CCOEFF:相关系数匹配法(值越大匹配越好)
    • TM_SQDIFF_NORMED:归一化平方差匹配法
    • TM_CCORR_NORMED:归一化相关匹配法
    • TM_CCOEFF_NORMED:归一化相关系数匹配法(推荐使用)

二、实现步骤

下面通过一个实例演示如何在可乐图像中定位模板图案:

1. 导入库并读取图像

首先需要导入 OpenCV 库,并读取源图像和模板图像:

python 复制代码
import cv2

# 读取源图像和模板图像
kele = cv2.imread('kele.png')
template = cv2.imread('template.png')

# 显示原始图像和模板图像
cv2.imshow('kele', kele)
cv2.imshow('template', template)
cv2.waitKey(0)

2. 获取模板尺寸

获取模板图像的高度和宽度,用于后续绘制匹配区域:

python 复制代码
h, w = template.shape[:2]  # 获取模板的高和宽

3. 执行模板匹配

使用归一化相关系数匹配法进行模板匹配:

python 复制代码
# 执行模板匹配,返回匹配结果矩阵
res = cv2.matchTemplate(kele, template, cv2.TM_CCOEFF_NORMED)

4. 查找最佳匹配位置

通过cv2.minMaxLoc()函数找到匹配结果中的最大值(最佳匹配)及其位置:

python 复制代码
# 获取匹配结果中的最值及位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = max_loc  # 最佳匹配区域的左上角坐标

5. 绘制匹配区域并显示结果

根据模板尺寸和最佳匹配位置,绘制矩形框标记匹配区域:

python 复制代码
# 计算匹配区域右下角坐标
bottom_right = (top_left[0] + w, top_left[1] + h)

# 绘制矩形框标记匹配区域
kele_template = cv2.rectangle(kele, top_left, bottom_right, color=(0, 255, 0), thickness=2)

# 显示匹配结果
cv2.imshow('kele_template', kele_template)
cv2.waitKey(0)

三、完整代码

python 复制代码
'''---------------------模板匹配---------------------'''
# cv2.matchTemplate(image, templ, method, result=None, mask=None)
# image:待搜索图像
# templ:模板图像
# method:计算匹配程度的方法,可以有:
#   TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配;匹配越好,值越小;匹配越差,值越大。
#   TM_CCORR 相关匹配法:该方法采用乘法操作;数值越大表明匹配程度越好。
#   TM_CCOEFF 相关系数匹配法:数值越大表明匹配程度越好。
#   TM_SQDIFF_NORMED 归一化平方差匹配法,匹配越好,值越小;匹配越差,值越大。
#   TM_CCORR_NORMED 归一化相关匹配法,数值越大表明匹配程度越好。
#   TM_CCOEFF_NORMED 归一化相关系数匹配法,数值越大表明匹配程度越好。
import cv2

kele = cv2.imread('kele.png')
template = cv2.imread('template.png')
cv2.imshow('kele', kele)
cv2.imshow('template', template)
cv2.waitKey(0)

h, w = template.shape[:2]
res = cv2.matchTemplate(kele, template, cv2.TM_CCOEFF_NORMED)  # 返回匹配结果的矩阵
# cv2.minMaxLoc可以获取矩阵中的最小值和最大值,以及最小值的索引号和最大值的索引号
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 最小值、最大值、最小值位置、最大值位置
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
kele_template = cv2.rectangle(kele, top_left, bottom_right, color=(0, 255, 0), thickness=2)  # 绘制矩形

cv2.imshow('kele_template', kele_template)
cv2.waitKey(0)

四、注意事项

  1. 模板图像尺寸应小于源图像尺寸
  2. 不同的匹配方法对光照、旋转等变化的鲁棒性不同,实际应用中需根据场景选择
  3. 归一化的匹配方法(带NORMED后缀)通常效果更好,适用于不同亮度条件
  4. 该方法只能检测与模板方向、尺寸完全一致的目标,对于有旋转或尺度变化的目标需要其他方法
相关推荐
会挠头但不秃10 小时前
深度学习(4)卷积神经网络
人工智能·神经网络·cnn
百***243710 小时前
GPT-5.2 技术升级与极速接入指南:从版本迭代到落地实践
大数据·人工智能·gpt
weixin_4215850111 小时前
PYTHON 迭代器1 - PEP-255
开发语言·python
L.fountain11 小时前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归
摘星编程11 小时前
Ascend C编程语言详解:打造高效AI算子的利器
c语言·开发语言·人工智能
phoenix@Capricornus11 小时前
气泡自动计数——数字图像处理设计题
计算机视觉
技术净胜11 小时前
MATLAB进行图像分割从基础阈值到高级分割
opencv·计算机视觉·matlab
DisonTangor11 小时前
【小米拥抱开源】小米MiMo团队开源309B专家混合模型——MiMo-V2-Flash
人工智能·开源·aigc
hxxjxw12 小时前
Pytorch分布式训练/多卡训练(六) —— Expert Parallelism (MoE的特殊策略)
人工智能·pytorch·python