CT影像寻找皮肤轮廓预处理

注意此方法处理的是CT影像。

问题是:原来对于CT影像寻找轮廓之前的预处理不合适,导致轮廓向体内偏移严重:

其实原因就是分割阈值过大。

主要处理步骤如下:

复制代码
 
python 复制代码
img = all_ds[i].pixel_array
 # 归一化
 norm = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
 ​
 # 开运算
 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))
 opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
 ​
 # 使用Otsu阈值分割 
 ret, binary = cv2.threshold(opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
 _, final = cv2.threshold(opening, ret, 255, cv2.THRESH_BINARY)
 ​
 contours, _ = cv2.findContours(final, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 # 提取最大轮廓,这是我们要的最大外围轮廓
 ctr = max(contours, key=cv2.contourArea).squeeze()

根据手头上几个CT影像的测试结果,自认为经过上面的处理得到的结果是较好的。

此前,在otsu阈值分割之前采用的是闭运算而不是开运算,实验结果是采用闭运算轮廓会出现"不规则锯齿"问题。而开运算则避免了这个问题。我认为,闭运算先膨胀再腐蚀,填补内部小空洞,对物体边缘的作用是更"模糊化",即使得前景和背景过度更平滑,区别更不明显;而开运算先腐蚀再膨胀,去除噪声小白点,对物体边缘的作用是更"清晰化",即使得前景和背景区分的更明显。

同时,在otsu之前一般会有高斯模糊处理,最初我也这个操作。但是,在这个任务中我们目的是更清晰的找出身体的最外围轮廓,让前景、背景区别更明显,模糊化不利于这个效果,所以去掉,实验结果显示去掉后效果也会变好。

缺点:

采用开运算之后偶尔几张影像会出现"内凹"现象,推测原因是开运算腐蚀过于严重,但总体来看,采用开运算利大于弊。

相关推荐
编程武士4 小时前
从50ms到30ms:YOLOv10部署中图像预处理的性能优化实践
人工智能·python·yolo·性能优化
我的xiaodoujiao4 小时前
Windows系统Web UI自动化测试学习系列2--环境搭建--Python-PyCharm-Selenium
开发语言·python·测试工具
月疯5 小时前
OPENCV摄像头读取视频
人工智能·opencv·音视频
傻啦嘿哟7 小时前
Python SQLite模块:轻量级数据库的实战指南
数据库·python·sqlite
Q_Q5110082857 小时前
python+django/flask+uniapp基于微信小程序的瑜伽体验课预约系统
spring boot·python·django·flask·uni-app·node.js·php
XueminXu7 小时前
Python读取MongoDB的JSON字典和列表对象转为字符串
python·mongodb·json·pymongo·mongoclient·isinstance·json.dumps
techdashen7 小时前
12分钟讲解Python核心理念
开发语言·python
jie*7 小时前
小杰机器学习(nine)——支持向量机
人工智能·python·机器学习·支持向量机·回归·聚类·sklearn
闭着眼睛学算法7 小时前
【华为OD机考正在更新】2025年双机位A卷真题【完全原创题解 | 详细考点分类 | 不断更新题目 | 六种主流语言Py+Java+Cpp+C+Js+Go】
java·c语言·javascript·c++·python·算法·华为od
山烛7 小时前
OpenCV:人脸检测,Haar 级联分类器原理
人工智能·opencv·计算机视觉·人脸检测·harr级联分类器