CT影像寻找皮肤轮廓预处理

注意此方法处理的是CT影像。

问题是:原来对于CT影像寻找轮廓之前的预处理不合适,导致轮廓向体内偏移严重:

其实原因就是分割阈值过大。

主要处理步骤如下:

复制代码
 
python 复制代码
img = all_ds[i].pixel_array
 # 归一化
 norm = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
 ​
 # 开运算
 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))
 opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
 ​
 # 使用Otsu阈值分割 
 ret, binary = cv2.threshold(opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
 _, final = cv2.threshold(opening, ret, 255, cv2.THRESH_BINARY)
 ​
 contours, _ = cv2.findContours(final, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 # 提取最大轮廓,这是我们要的最大外围轮廓
 ctr = max(contours, key=cv2.contourArea).squeeze()

根据手头上几个CT影像的测试结果,自认为经过上面的处理得到的结果是较好的。

此前,在otsu阈值分割之前采用的是闭运算而不是开运算,实验结果是采用闭运算轮廓会出现"不规则锯齿"问题。而开运算则避免了这个问题。我认为,闭运算先膨胀再腐蚀,填补内部小空洞,对物体边缘的作用是更"模糊化",即使得前景和背景过度更平滑,区别更不明显;而开运算先腐蚀再膨胀,去除噪声小白点,对物体边缘的作用是更"清晰化",即使得前景和背景区分的更明显。

同时,在otsu之前一般会有高斯模糊处理,最初我也这个操作。但是,在这个任务中我们目的是更清晰的找出身体的最外围轮廓,让前景、背景区别更明显,模糊化不利于这个效果,所以去掉,实验结果显示去掉后效果也会变好。

缺点:

采用开运算之后偶尔几张影像会出现"内凹"现象,推测原因是开运算腐蚀过于严重,但总体来看,采用开运算利大于弊。

相关推荐
Q_Q196328847531 分钟前
python+django/flask基于深度学习的个性化携程美食数据推荐系统
spring boot·python·深度学习·django·flask·node.js·php
胡耀超34 分钟前
通往AGI的模块化路径:一个可能的技术架构(同时解答微调与RAG之争)
人工智能·python·ai·架构·大模型·微调·agi
清空mega1 小时前
从零开始搭建 flask 博客实验(常见疑问)
后端·python·flask
xier_ran1 小时前
关键词解释:DAG 系统(Directed Acyclic Graph,有向无环图)
python·算法
顾安r2 小时前
11.7 脚本网站 中国象棋
python·bash
WenGyyyL2 小时前
微信小程序开发——第二章:微信小程序开发环境搭建
开发语言·python·微信小程序
循环过三天2 小时前
3.2、Python-元组
开发语言·python
Q_Q5110082852 小时前
python+django/flask的篮球馆/足球场地/运动场地预约系统
spring boot·python·django·flask·node.js·php
云雾J视界2 小时前
AI驱动半导体良率提升:基于机器学习的晶圆缺陷分类系统搭建
人工智能·python·机器学习·智能制造·数据驱动·晶圆缺陷分类
朝凡FR2 小时前
AIShareTxt入门:快速准确高效的为金融决策智能体提供股票技术指标上下文
python·ai编程