CT影像寻找皮肤轮廓预处理

注意此方法处理的是CT影像。

问题是:原来对于CT影像寻找轮廓之前的预处理不合适,导致轮廓向体内偏移严重:

其实原因就是分割阈值过大。

主要处理步骤如下:

复制代码
 
python 复制代码
img = all_ds[i].pixel_array
 # 归一化
 norm = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
 ​
 # 开运算
 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))
 opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
 ​
 # 使用Otsu阈值分割 
 ret, binary = cv2.threshold(opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
 _, final = cv2.threshold(opening, ret, 255, cv2.THRESH_BINARY)
 ​
 contours, _ = cv2.findContours(final, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 # 提取最大轮廓,这是我们要的最大外围轮廓
 ctr = max(contours, key=cv2.contourArea).squeeze()

根据手头上几个CT影像的测试结果,自认为经过上面的处理得到的结果是较好的。

此前,在otsu阈值分割之前采用的是闭运算而不是开运算,实验结果是采用闭运算轮廓会出现"不规则锯齿"问题。而开运算则避免了这个问题。我认为,闭运算先膨胀再腐蚀,填补内部小空洞,对物体边缘的作用是更"模糊化",即使得前景和背景过度更平滑,区别更不明显;而开运算先腐蚀再膨胀,去除噪声小白点,对物体边缘的作用是更"清晰化",即使得前景和背景区分的更明显。

同时,在otsu之前一般会有高斯模糊处理,最初我也这个操作。但是,在这个任务中我们目的是更清晰的找出身体的最外围轮廓,让前景、背景区别更明显,模糊化不利于这个效果,所以去掉,实验结果显示去掉后效果也会变好。

缺点:

采用开运算之后偶尔几张影像会出现"内凹"现象,推测原因是开运算腐蚀过于严重,但总体来看,采用开运算利大于弊。

相关推荐
哲Zheᗜe༘15 小时前
了解学习Python编程之python基础
开发语言·python·学习
麦麦大数据15 小时前
F024 RNN+Vue+Flask电影推荐可视化系统 python flask mysql 深度学习 echarts
python·rnn·深度学习·vue·echarts·电影推荐
Roc-xb16 小时前
ModuleNotFoundError: No module named ‘conda_token‘
开发语言·python·conda
weixin_5259363316 小时前
部分Spark SQL编程要点
大数据·python·sql·spark
Xyz996_16 小时前
python编程基础知识
python
人工干智能16 小时前
Python 开发中:`.ipynb`(Jupyter Notebook 文件)和 `.py`(Python 脚本文件)
开发语言·python·jupyter
woshihonghonga16 小时前
Jupyter Notebook单元格输出换行问题解决
ide·python·jupyter
~~李木子~~17 小时前
Jupyter Notebook(ipynb)转 Python(py)文件
python·jupyter
ERROR_LESS17 小时前
【ADS-1】【python基础-1】jupyter notebook环境极简搭建
python·jupyter
傻啦嘿哟17 小时前
Python爬取B站视频评论区情感分析:从数据采集到价值挖掘
开发语言·python