CT影像寻找皮肤轮廓预处理

注意此方法处理的是CT影像。

问题是:原来对于CT影像寻找轮廓之前的预处理不合适,导致轮廓向体内偏移严重:

其实原因就是分割阈值过大。

主要处理步骤如下:

复制代码
 
python 复制代码
img = all_ds[i].pixel_array
 # 归一化
 norm = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
 ​
 # 开运算
 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))
 opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
 ​
 # 使用Otsu阈值分割 
 ret, binary = cv2.threshold(opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
 _, final = cv2.threshold(opening, ret, 255, cv2.THRESH_BINARY)
 ​
 contours, _ = cv2.findContours(final, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 # 提取最大轮廓,这是我们要的最大外围轮廓
 ctr = max(contours, key=cv2.contourArea).squeeze()

根据手头上几个CT影像的测试结果,自认为经过上面的处理得到的结果是较好的。

此前,在otsu阈值分割之前采用的是闭运算而不是开运算,实验结果是采用闭运算轮廓会出现"不规则锯齿"问题。而开运算则避免了这个问题。我认为,闭运算先膨胀再腐蚀,填补内部小空洞,对物体边缘的作用是更"模糊化",即使得前景和背景过度更平滑,区别更不明显;而开运算先腐蚀再膨胀,去除噪声小白点,对物体边缘的作用是更"清晰化",即使得前景和背景区分的更明显。

同时,在otsu之前一般会有高斯模糊处理,最初我也这个操作。但是,在这个任务中我们目的是更清晰的找出身体的最外围轮廓,让前景、背景区别更明显,模糊化不利于这个效果,所以去掉,实验结果显示去掉后效果也会变好。

缺点:

采用开运算之后偶尔几张影像会出现"内凹"现象,推测原因是开运算腐蚀过于严重,但总体来看,采用开运算利大于弊。

相关推荐
人工智能AI技术19 分钟前
【Agent从入门到实践】44 监控与日志:添加监控指标、日志记录,方便问题排查
人工智能·python
2301_8174973331 分钟前
自然语言处理(NLP)入门:使用NLTK和Spacy
jvm·数据库·python
weixin_5500831544 分钟前
QTdesigner配置在pycharm里使用anaconda环境配置安装成功
ide·python·pycharm
强化试剂瓶44 分钟前
Silane-PEG8-DBCO,硅烷-聚乙二醇8-二苯并环辛炔技术应用全解析
python·flask·numpy·pyqt·fastapi
钱多多先森1 小时前
【Dify】使用 python 调用 Dify 的 API 服务,查看“知识检索”返回内容,用于前端溯源展示
开发语言·前端·python·dify
zhougl9961 小时前
Java定时任务实现
java·开发语言·python
ZPC82101 小时前
ROS2 独占内核
人工智能·python·算法·机器人
hcnaisd21 小时前
使用Python进行PDF文件的处理与操作
jvm·数据库·python
不会代码的小测试1 小时前
UI自动化-针对验证码登录的系统,通过首次手动登录存储cookie的方式后续访问免登录方法
开发语言·python·selenium