CT影像寻找皮肤轮廓预处理

注意此方法处理的是CT影像。

问题是:原来对于CT影像寻找轮廓之前的预处理不合适,导致轮廓向体内偏移严重:

其实原因就是分割阈值过大。

主要处理步骤如下:

复制代码
 
python 复制代码
img = all_ds[i].pixel_array
 # 归一化
 norm = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
 ​
 # 开运算
 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))
 opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
 ​
 # 使用Otsu阈值分割 
 ret, binary = cv2.threshold(opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
 _, final = cv2.threshold(opening, ret, 255, cv2.THRESH_BINARY)
 ​
 contours, _ = cv2.findContours(final, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 # 提取最大轮廓,这是我们要的最大外围轮廓
 ctr = max(contours, key=cv2.contourArea).squeeze()

根据手头上几个CT影像的测试结果,自认为经过上面的处理得到的结果是较好的。

此前,在otsu阈值分割之前采用的是闭运算而不是开运算,实验结果是采用闭运算轮廓会出现"不规则锯齿"问题。而开运算则避免了这个问题。我认为,闭运算先膨胀再腐蚀,填补内部小空洞,对物体边缘的作用是更"模糊化",即使得前景和背景过度更平滑,区别更不明显;而开运算先腐蚀再膨胀,去除噪声小白点,对物体边缘的作用是更"清晰化",即使得前景和背景区分的更明显。

同时,在otsu之前一般会有高斯模糊处理,最初我也这个操作。但是,在这个任务中我们目的是更清晰的找出身体的最外围轮廓,让前景、背景区别更明显,模糊化不利于这个效果,所以去掉,实验结果显示去掉后效果也会变好。

缺点:

采用开运算之后偶尔几张影像会出现"内凹"现象,推测原因是开运算腐蚀过于严重,但总体来看,采用开运算利大于弊。

相关推荐
全栈陈序员12 分钟前
【Python】基础语法入门(二十)——项目实战:从零构建命令行 To-Do List 应用
开发语言·人工智能·python·学习
jcsx16 分钟前
如何将django项目发布为https
python·https·django
岁月宁静36 分钟前
LangGraph 技术详解:基于图结构的 AI 工作流与多智能体编排框架
前端·python·langchain
百锦再37 分钟前
京东云鼎入驻方案解读——通往协同的“高架桥”与“快速路”
android·java·python·rust·django·restful·京东云
岁月宁静38 分钟前
LangChain 技术栈全解析:从模型编排到 RAG 实战
前端·python·langchain
Nick_zcy1 小时前
基于Vue和Python的羽毛球拍智能推荐系统, 从“不会选羽毛球拍”到“选对拍”的一站式小工具
前端·vue.js·python·算法·推荐算法
冰冰菜的扣jio1 小时前
理解类加载过程
开发语言·python
qilei20101 小时前
【Python】创建日期列表
python
百***07451 小时前
GPT-5.2国内稳定接入实战指南:中转调用全链路方案(Python适配)
python·gpt·php
zyxqyy&∞1 小时前
python代码小练-4
开发语言·python