第八十六节:九点标定理论与实践深度解析
九点标定的数学原理
九点标定本质是求像素坐标系与世界坐标系之间的仿射变换关系[1]。通过已知9个特征点的像素坐标和对应的世界坐标,建立如下变换关系:
[X] [a11 a12 a13] [x]
[Y] = [a21 a22 a23] [y]
[1] [0 0 1 ] [1]
其中a11-a23为仿射变换参数,(x,y)为像素坐标,(X,Y)为世界坐标。
标定板设计原则
标准九点标定板:
-
3×3排列的特征点阵列
-
特征点间距精确已知(通常5-50mm)
-
特征点形状需易于识别(圆形、十字形)
- 生成自定义标定板描述文件
gen_caltab(3, 3, 0.025, 0.3, 'custom_caltab.ps', 'custom_caltab.descr')
- 生成自定义标定板描述文件
标定精度影响因素
- 标定板精度:特征点定位精度直接影响标定结果
- 视野覆盖度:标定板应占视野1/3-2/3[39]
- 姿态多样性:标定板倾斜角度有助于提高径向畸变估计
- 光照均匀性:避免反光和阴影影响特征点提取
实战:自动贴合系统九点标定
在工业贴合应用中,相机高度变化是常见问题,需要特殊处理:
* 高度变化的标定流程
* 1. 相机在H1位置标定
read_image(Image1, 'calib_pos1')
find_calib_object(Image1, CalibDataID, 0, 0, 1, [])
get_calib_data_observ_points(CalibDataID, 0, 0, 1, PixelRow1, PixelCol1, Pose1)
* 2. 相机在H2位置标定
read_image(Image2, 'calib_pos2')
find_calib_object(Image2, CalibDataID, 0, 0, 2, [])
get_calib_data_observ_points(CalibDataID, 0, 0, 2, PixelRow2, PixelCol2, Pose2)
* 3. 计算两位置间的变换矩阵
vector_to_hom_mat2d(PixelRow2, PixelCol2, PixelRow1, PixelCol1, HomMat2D)
* 4. 使用时的坐标变换
affine_trans_point_2d(DetectedRow, DetectedCol, HomMat2D, TransformedRow, TransformedCol)
第八十七节:手眼标定技术全解析
手眼标定理论基础
手眼标定本质是求解机器人坐标系(Base/Tool)与摄像机坐标系之间的变换矩阵[15]。根据相机安装位置分为两种类型:
眼在手上(Eye-in-Hand)
-
特点:相机随机器人移动,相机与工具坐标系关系固定[12]
-
标定关系:求解Tool坐标系与Camera坐标系之间的关系
-
优势:工作空间大,适用于大视野检测
-
眼在手上标定流程
read_pose('robot_poses.dat', RobotPoses)
read_image(Image, 'handeye_image_1') -
创建标定模型
create_calib_data('hand_eye_moving_cam', 1, 1, CalibDataID) -
设置标定板描述文件
set_calib_data_calib_object(CalibDataID, 0, 'caltab.descr') -
添加标定观察
for Index := 1 to 15 by 1
read_image(Image, 'handeye_' + Index$'02d')
find_calib_object(Image, CalibDataID, 0, 0, Index, [])-
获取标定板观测点和姿态
get_calib_data_observ_points(CalibDataID, 0, 0, Index, Row, Col, Pose) -
设置机器人姿态(Tool在Base坐标系下的位姿)
set_calib_data(CalibDataID, 'hand_eye', 'tool_in_base_pose', Index, RobotPoses[Index-1])
endfor
-
-
执行手眼标定
calibrate_hand_eye(CalibDataID, Errors) -
获取标定结果
get_calib_data(CalibDataID, 'hand_eye', 'tool_in_cam_pose', [], ToolInCam)
get_calib_data(CalibDataID, 'hand_eye', 'obj_in_base_pose', [], ObjInBase)
-
眼在手外(Eye-to-Hand)
- 特点:相机固定安装,机器人与相机坐标系独立[12]
- 标定关系:求解Base坐标系与Camera坐标系之间的关系
- 优势:相机稳定性好,适用于精密测量
3D手眼标定扩展
对于3D相机系统,手眼标定需要考虑Z轴方向的偏差:
* 3D手眼标定
create_calib_data('hand_eye_stationary_3d_sensor', 1, 1, CalibDataID)
* 设置3D相机内参
set_calib_data_cam_param(CalibDataID, 0, 'perspective', CamParam3D)
* 标定过程与2D类似,但获取3D位姿信息
get_calib_data_observ_points(CalibDataID, 0, 0, Index, Row3D, Col3D, Pose3D)
* 获取3D手眼标定结果
get_calib_data(CalibDataID, 'hand_eye', 'sensor_in_base_pose', [], SensorInBase)
get_calib_data(CalibDataID, 'hand_eye', 'obj_in_base_pose', [], ObjInBase3D)
第八十八节:TCP标定与旋转中心计算
TCP标定原理
TCP(Tool Center Point)标定本质是求解Tool0法兰工具坐标系到Tool1实际工具坐标系的变换矩阵[29]。这是机器人精准抓取的关键技术。
四点法TCP标定
标定步骤:
-
将工具末端对准基准点,记录机器人姿态P1
-
绕工具轴线旋转90°,再次对准基准点,记录姿态P2
-
绕工具轴线旋转180°,记录姿态P3
-
绕工具轴线旋转270°,记录姿态P4
-
TCP标定计算
read_pose('tcp_calib_poses.dat', TCPPoses)
TCPPose1 := TCPPoses[0]
TCPPose2 := TCPPoses[1]
TCPPose3 := TCPPoses[2]
TCPPose4 := TCPPoses[3] -
提取姿态中的旋转部分
pose_to_hom_mat3d(TCPPose1, HomMat3D1)
pose_to_hom_mat3d(TCPPose2, HomMat3D2) -
计算工具坐标系的旋转偏移
hom_mat3d_to_pose(HomMat3D2 * invert(HomMat3D1), OffsetPose) -
获得TCP相对于Tool0的偏差
get_pose_param(OffsetPose, 'trans_x', TCPOffsetX)
get_pose_param(OffsetPose, 'trans_y', TCPOffsetY)
get_pose_param(OffsetPose, 'trans_z', TCPOffsetZ)
-
旋转中心求解
在九点标定中,工具旋转中心的精确计算至关重要:
* 三点拟合圆求旋转中心[29]
read_image(Image, 'rotation_calib')
find_calib_object(Image, CalibDataID, 0, 0, 1, [])
get_calib_data_observ_points(CalibDataID, 0, 0, 1, Row, Col, Pose)
* 转换为世界坐标
image_points_to_world_plane(CamParam, ExtParam, Row, Col, 'm', WorldX, WorldY)
* 提取三个标志点坐标
Point1X := WorldX[0]
Point1Y := WorldY[0]
Point2X := WorldX[1]
Point2Y := WorldY[1]
Point3X := WorldX[2]
Point3Y := WorldY[2]
* 拟合圆心(使用最小二乘法)
fit_circle_contour_xld([Point1Y, Point2Y, Point3Y], [Point1X, Point2X, Point3X],
'algebraic', -1, 0, 0, 3, 2, CenterY, CenterX, Radius, StartPhi, EndPhi, PointOrder)
* 计算偏差
ToolOffsetX := Point1X - CenterX
ToolOffsetY := Point1Y - CenterY
* 输出TCP偏移量
dev_display(TCPOffsetX, TCPOffsetY)
第八十九节:深度学习分类器进阶技术
MLP神经网络深度解析
多层感知机(MLP)是Halcon中最常用的分类器之一[10],其性能排序为:MLP > SVM > GMM > KNN[10]。
特征工程与数据预处理
图像特征提取:
* 提取区域灰度特征
gray_histo(Region, Image, AbsoluteHisto, RelativeHisto)
* 提取形状特征
select_shape(Region, SelectedRegion, 'area', 'and', 100, 10000)
select_shape(SelectedRegion, SelectedRegion2, 'circularity', 'and', 0.8, 1.0)
* 提取纹理特征
texture_laws(Image, TextureImage, 'l2', 2, 7)
MLP模型训练与优化
* 创建MLP分类器
create_class_mlp(8, 12, 3, 'softmax', 'principal_components', 8, 42, MLPHandle)
* 添加训练样本
for Index := 1 to 100 by 1
* 特征向量计算
feature_vector[0] := Area[Index]
feature_vector[1] := Circularity[Index]
feature_vector[2] := Rectangularity[Index]
feature_vector[3] := Orientation[Index]
feature_vector[4] := MeanGray[Index]
feature_vector[5] := StdDevGray[Index]
feature_vector[6] := MinGray[Index]
feature_vector[7] := MaxGray[Index]
* 添加样本
add_sample_class_mlp(MLPHandle, real(feature_vector), ClassLabel[Index])
endfor
* 训练模型
train_class_mlp(MLPHandle, 500, 0.001, 0.001, Error, ErrorLog)
* 保存模型
write_class_mlp(MLPHandle, 'trained_model.clm')
GMM混合高斯模型应用
GMM适合简单样本,训练速度快但识别率相对较低[10]:
* 创建GMM分类器
create_class_gmm(8, 3, 2, 'full', 'normalization', 2, 42, GMMHandle)
* 添加样本
add_samples_image_class_gmm(Image, Regions, GMMHandle)
* 训练GMM
train_class_gmm(GMMHandle, 100, 0.001, Error)
* 分类预测
classify_image_class_gmm(Image, ClassRegions, GMMHandle, 0.8, ClassNames, Confidence)
第九十节:频域图像处理高级技术
频域滤波器设计
频域处理在缺陷检测中有着独特优势,特别是周期性缺陷和微细划痕的检测[42]。
高斯带通滤波器
* 创建高斯带通滤波器
gen_gauss_filter(GaussFilter, 512, 512, 0.5, 1.5, 0, 'normalized', 0, 0, 512, 512)
* 频域滤波
fft_image(Image, FFTImage)
convol_fft(FFTImage, GaussFilter, FilteredFFT)
fft_image_inv(FilteredFFT, FilteredImage)
差分滤波器(缺陷增强)
* 创建差分滤波器[42]
gen_gauss_filter(Gauss1, 512, 512, 0.5, 1.5, 0, 'normalized', 0, 0, 512, 512)
gen_gauss_filter(Gauss2, 512, 512, 1.0, 1.0, 0, 'normalized', 0, 0, 512, 512)
sub_image(Gauss1, Gauss2, DiffFilter, 1, 0)
* 应用差分滤波器
convol_fft(FFTImage, DiffFilter, DiffFilteredFFT)
fft_image_inv(DiffFilteredFFT, DefectEnhanced)
光度立体法三维重建
光度立体法通过多光源图像重建物体表面三维信息[10]:
* 光度立体重建
photometric_stereo(Images, HeightImage, GradientImage, AlbedoImage,
'poisson', 5, [], [], [], [], [], 0.2)
* 计算法向量
derivate_vector_field(GradientImage, NormalField, 1, 'mean_curvature')
第九十一节:3D视觉技术深度应用
双目立体视觉
双目立体视觉通过两个相机的视差信息重建三维点云[19]:
* 双目标定[19]
calibrate_stereo_cameras(Caltab, CalibParam1, CalibParam2,
NFinalPose1, NFinalPose2, c1Pc2, Errors)
* 图像矫正
rectify_stereo_image(Image1, Image2, Image1Rect, Image2Rect,
CalibParam1, CalibParam2, c1Pc2)
* 视差计算
stereo_match(Image1Rect, Image2Rect, Disparity, Score, 'ncc', 15, 5, 5, 1, 0, 'none', 'false')
* 点云重建
disparity_image_to_xyz(Disparity, CalibParam1, Row, Col, Z, X, Y)
激光三角测量
激光三角测量是高精度3D测量的经典方法[11]:
光平面标定
* 光平面标定流程
* 1. 标定相机内外参
calibrate_cameras(CalibDataID, CamErrors)
* 2. 光平面标定[11]
read_image(LowImage, 'laser_low_pos')
read_image(HighImage, 'laser_high_pos')
* 提取激光线条中心
lines_gauss(LowImage, LinesLow, 1, 0, 8, 'dark', 'false')
lines_gauss(HighImage, LinesHigh, 1, 0, 8, 'dark', 'false')
* 拟合光平面
fit_3d_plane_xyz(X, Y, Z, PlaneParams)
点云重建
* 激光三角重建
reconstruct_sheet_of_light_profile(Images, SheetOfLightModel,
X, Y, Z, Intensity, Score)
第九十二节:工业通信协议实现
Modbus RTU协议
Modbus RTU是工业现场常用的串行通信协议[28][44]:
协议格式
* Modbus RTU请求格式
FunctionCode := 3 * 读取保持寄存器
RegisterAddr := 40001 * 寄存器地址
RegisterCount := 2 * 读取寄存器数量
* 计算CRC校验
RequestData := [DeviceAddr, FunctionCode, RegisterAddr>>8, RegisterAddr&255,
RegisterCount>>8, RegisterCount&255]
CRC := calculate_crc16(RequestData)
ModbusRequest := [RequestData, CRC&255, CRC>>8]
* 发送请求
write_serial_data(SerialHandle, ModbusRequest, 8)
* 接收响应
read_serial_data(SerialHandle, ResponseData, 7)
C#串口通信实现
public class ModbusRTU
{
private SerialPort serialPort;
public bool Connect(string portName, int baudRate)
{
try
{
serialPort = new SerialPort(portName, baudRate, Parity.None, 8, StopBits.One);
serialPort.Open();
return true;
}
catch (Exception ex)
{
Console.WriteLine($"连接失败: {ex.Message}");
return false;
}
}
public ushort[] ReadHoldingRegisters(ushort startAddress, ushort registerCount)
{
byte[] request = new byte[8];
request[0] = 0x01; // 设备地址
request[1] = 0x03; // 功能码
request[2] = (byte)(startAddress >> 8);
request[3] = (byte)(startAddress & 0xFF);
request[4] = (byte)(registerCount >> 8);
request[5] = (byte)(registerCount & 0xFF);
// 计算CRC
ushort crc = CalculateCRC16(request, 6);
request[6] = (byte)(crc & 0xFF);
request[7] = (byte)(crc >> 8);
serialPort.Write(request, 0, 8);
// 接收响应
byte[] response = new byte[5 + registerCount * 2];
serialPort.Read(response, 0, response.Length);
// 解析数据
ushort[] registers = new ushort[registerCount];
for (int i = 0; i < registerCount; i++)
{
registers[i] = (ushort)(response[3 + i * 2] << 8 | response[4 + i * 2]);
}
return registers;
}
private ushort CalculateCRC16(byte[] data, int length)
{
ushort crc = 0xFFFF;
for (int i = 0; i < length; i++)
{
crc ^= data[i];
for (int j = 0; j < 8; j++)
{
if ((crc & 0x0001) != 0)
{
crc >>= 1;
crc ^= 0xA001;
}
else
{
crc >>= 1;
}
}
}
return crc;
}
}
第九十三节:网络通信编程实战
TCP/UDP通信实现
public class NetworkCommunication
{
private TcpClient tcpClient;
private NetworkStream networkStream;
// TCP服务器
public async Task StartTcpServerAsync(int port)
{
TcpListener server = new TcpListener(IPAddress.Any, port);
server.Start();
while (true)
{
TcpClient client = await server.AcceptTcpClientAsync();
await HandleTcpClientAsync(client);
}
}
private async Task HandleTcpClientAsync(TcpClient client)
{
networkStream = client.GetStream();
byte[] buffer = new byte[1024];
int bytesRead = await networkStream.ReadAsync(buffer, 0, buffer.Length);
string message = Encoding.UTF8.GetString(buffer, 0, bytesRead);
// 解析指令
ProcessMessage(message);
// 发送响应
string response = $"ACK: {message}";
byte[] responseData = Encoding.UTF8.GetBytes(response);
await networkStream.WriteAsync(responseData, 0, responseData.Length);
}
// UDP通信
public async Task SendUdpMessage(string message, string remoteIP, int port)
{
UdpClient udpClient = new UdpClient();
byte[] data = Encoding.UTF8.GetBytes(message);
await udpClient.SendAsync(data, data.Length, remoteIP, port);
}
private void ProcessMessage(string message)
{
string[] parts = message.Split(',');
switch (parts[0])
{
case "MOVE":
// 机器人移动指令
double x = double.Parse(parts[1]);
double y = double.Parse(parts[2]);
double z = double.Parse(parts[3]);
MoveRobot(x, y, z);
break;
case "CAPTURE":
// 拍照指令
CaptureImage();
break;
}
}
}
第九十四节:工业相机选型与配置
相机选型参数详解
面阵相机选型
核心参数计算[3]:
-
精度 = 视野/分辨率 = 像元/放大倍率
-
分辨率 = (视野/精度要求) × 2-3倍安全系数
-
精度计算示例
FOV_Width := 100 * 视野宽度(mm)
FOV_Height := 80 * 视野高度(mm)
Accuracy_Width := 0.1 * X方向精度要求(mm)
Accuracy_Height := 0.1 * Y方向精度要求(mm) -
计算所需分辨率
Pixel_Width := FOV_Width / Accuracy_Width * 2 * 2倍安全系数
Pixel_Height := FOV_Height / Accuracy_Height * 2 -
选择标准分辨率
if (Pixel_Width <= 1280)
Resolution := '1280x960'
elseif (Pixel_Width <= 1600)
Resolution := '1600x1200'
else
Resolution := '2048x1536'
endif
-
线阵相机选型
行频计算公式[3]:
行频 = (物料宽度 × 运动速度) / (水平分辨率 × 物料宽度)
* 线阵相机行频计算
Material_Width := 500 * 物料宽度(mm)
Speed := 100 * 运动速度(mm/s)
Resolution_H := 2048 * 水平分辨率(像素)
Line_Frequency := (Speed / Material_Width) * Resolution_H
工业接口选择
不同接口特点对比
| 接口类型 | 传输距离 | 传输速度 | 成本 | 抗干扰能力 |
|---|---|---|---|---|
| USB 3.0 | 5米 | 5Gbps | 低 | 中等 |
| GigE | 100米 | 1Gbps | 中等 | 高 |
| Camera Link | 10米 | 6.8Gbps | 高 | 极高 |
| CoaXPress | 100米 | 12.5Gbps | 高 | 极高 |
* 相机SDK连接示例(以海康相机为例)
open_framegrabber('BaslerGigE', 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, 'false', 'default', 'Camera', 0, -1, AcqHandle)
* 设置相机参数
set_framegrabber_param(AcqHandle, 'exposure_time', 10000) * 曝光时间(微秒)
set_framegrabber_param(AcqHandle, 'gain', 1.0) * 增益
set_framegrabber_param(AcqHandle, 'width', 1600) * 图像宽度
set_framegrabber_param(AcqHandle, 'height', 1200) * 图像高度
第九十五节:光源选型与光学系统设计
光源分类与选型原则
各类光源特点分析[16]
环形光源:
- 适用场景:80%工业检测应用
- 打光角度影响显著:30°低角度突出凹凸缺陷,90°高角度均匀照明
- 波长选择:红光用于金属表面,绿光用于PCB检测
同轴光源:
-
特殊应用:镜面反光物料检测
-
缺点:亮度降低,照射范围小
-
优势:消除镜面反射,确保成像均匀
- 光源选型决策树
if (Material_Type == 'metal' and Surface_Roughness < 0.1)- 镜面反射,选择同轴光源
Light_Source := 'coaxial'
Wavelength := 'red'
elseif (Defect_Type == 'scratch') - 划痕检测,选择低角度环形光
Light_Source := 'low_angle_ring'
Angle := 30 * 30度
Wavelength := 'blue'
elseif (Material_Type == 'transparent') - 透明物料,选择背光源
Light_Source := 'backlight'
Wavelength := 'blue' * 短波长,衍射弱
endif
- 镜面反射,选择同轴光源
- 光源选型决策树
光学系统设计
焦距计算与镜头选型[2]
基本焦距公式:
f = (WD × CCD_Size) / FOV
* 镜头焦距计算
WD := 65 * 工作距离(mm)
CCD_Diagonal := 8.5 * CCD靶面对角尺寸(mm)
FOV_Diagonal := 50 * 视野对角尺寸(mm)
Focal_Length := (WD * CCD_Diagonal) / FOV_Diagonal
* 选择标准焦距镜头
if (Focal_Length <= 12)
Selected_Lens := '8mm'
elseif (Focal_Length <= 25)
Selected_Lens := '16mm'
elseif (Focal_Length <= 50)
Selected_Lens := '35mm'
else
Selected_Lens := '50mm'
endif
景深计算与应用[34]
* 景深计算公式
COC := 0.03 * 弥散圆直径(mm)
FNumber := 8 * 光圈数
Magnification := 0.5 * 放大倍率
Depth_of_Field := (2 * COC * FNumber * (Magnification + 1)) / (Magnification * Magnification)
* 输出景深信息
dev_disp_text('景深: ' + Depth_of_Field$'.2f' + ' mm', 'window', 12, 12, 'black', 'true', [])
第九十六节:高级模板匹配技术
多尺度模板匹配优化
在复杂工业环境中,单一尺度的模板匹配往往不能满足需求,需要多尺度技术[4]:
等比缩放匹配
* 创建多尺度模板
create_scaled_shape_model(Template, 5, 0.7, 1.3, 0.01, 0.5, 0.9, 'auto', 'use_polarity')
* 优化搜索参数
set_shape_model_param(ScaleModelID, 'greedness', 0.8)
set_shape_model_param(ScaleModelID, 'subpixel', 'true')
set_shape_model_param(ScaleModelID, 'border_shape_models', 'true')
* 执行多尺度搜索
find_scaled_shape_model(Image, ScaleModelID, 0.7, 1.3, 0.5, 600, 1, 0.5,
'least_squares', 0, 0.8, Row, Column, Angle, Scale, Score)
不等比缩放匹配
对于变形物料,需要考虑各向异性缩放:
* 创建各向异性缩放模板
create_aniso_shape_model(Template, 5, 0.8, 1.2, 0, 0.8, 1.2, 0, 'auto', 'use_polarity')
* 搜索不同方向的缩放
find_aniso_shape_model(Image, AnisoModelID, 0.8, 1.2, 0, 0.8, 1.2, 0,
0.5, 600, 1, 0.5, 'least_squares', 0, 0.8,
Row, Column, Angle, ScaleR, ScaleC, Score)
低对比度图像处理
针对低对比度、高噪声环境[22]:
* 预处理增强
emphasize(Image, ImageEnhanced, 10, 10, 1.0)
* 使用差分高斯增强边缘
diff_of_gauss(ImageEnhanced, DiffImage, 1.0, 2.0)
* 创建模板(在增强图像上)
create_shape_model(DiffImage, 3, 0, 3.14159, 'auto', 'use_polarity', 'auto', 1, ModelID)
* 低对比度模板搜索
find_shape_model(DiffImage, ModelID, 0, 3.14159, 0.3, 5, 0.5, 'least_squares',
0, 0.8, Row, Column, Angle, Score)
第九十七节:OCR识别技术进阶
复杂背景OCR处理
预处理技术栈
* 1. 差分高斯增强
diff_of_gauss(Image, ImageEnhanced, 1.0, 2.0)
* 2. 灰度形态学处理
gray_opening(ImageEnhanced, ImageOpened, 3, 3)
gray_closing(ImageOpened, ImageClosed, 3, 3)
* 3. 自适应阈值
auto_threshold(ImageClosed, Regions, 2.0)
* 4. 区域筛选
select_shape(Regions, SelectedRegions, 'area', 'and', 50, 2000)
select_shape(SelectedRegions, CharRegions, 'rectangularity', 'and', 0.3, 1.0)
字符分割技术
动态分割算法[48]:
* 动态字符分割
partition_dynamic(CharRegions, PartitionedRegions, 20, 0.2)
* 区域优化
opening_rectangle1(PartitionedRegions, RegionsOpened, 2, 2)
fill_up(RegionsOpened, RegionsFilled)
* 字符排序
sort_region(RegionsFilled, SortedRegions, 'first_point', 'true', 'column')
倾斜字符处理
错切变换校正[35]
* 计算字符倾斜角度
text_line_orientation(Regions, Image, 20, -45, 45, OrientationAngle)
* 错切变换矩阵
hom_mat2d_slant([], OrientationAngle, 'x', [], HomMat2DSlant)
* 应用错切变换
affine_trans_image(Image, ImageCorrected, HomMat2DSlant, 'constant', 'false')
OCR模型训练与优化
* 创建OCR分类器
create_ocr_class_mlp(80, 60, 'softmax', 'canonical_variates', 10, [], [], OCRHandle)
* 特征归一化设置
set_ocr_param(OCRHandle, 'adaptation_min_num', 50)
set_ocr_param(OCRHandle, 'rejection_threshold', 0.9)
* 训练样本准备
write_ocr_trainf(CharRegions, ImageCorrected, Characters, 'ocr_train.trf')
* 模型训练
trainf_ocr_class_mlp(OCRHandle, 'ocr_train.trf', 100, 0.001, 0.001, Error, ErrorLog)
* 保存模型
write_ocr_class_mlp(OCRHandle, 'ocr_trained_model.omc')
第九十八节:缺陷检测算法综合应用
传统缺陷检测方法
基于频域的缺陷检测
* 1. 频域处理
fft_image(Image, FFTImage)
power_real(FFTImage, PowerSpectrum)
* 2. 背景提取
threshold(PowerSpectrum, BackgroundMask, 128, 255)
gen_image_proto(PowerSpectrum, BackgroundImage, 255)
* 3. 空间域差分增强
sub_image(Image, BackgroundImage, DefectImage, 1, 128)
* 4. 缺陷分割
fast_threshold(DefectImage, DefectRegions, 20, 'light')
基于机器学习的缺陷分类
* 提取缺陷特征
* 几何特征
select_shape(DefectRegions, SelectedDefects, 'area', 'and', 10, 5000)
area_center(SelectedDefects, Area, Row, Column)
* 灰度特征
gray_features(SelectedDefects, Image, ['mean', 'min', 'max', 'standard_deviation'],
MeanGray, MinGray, MaxGray, StdDev)
* 组合特征向量
Features := [Area, MeanGray, StdDev]
* GMM分类
classify_class_gmm(Features, GMMHandle, 1, ClassIDs, Confidence)
深度学习缺陷检测
语义分割实现[11]
* 数据预处理
read_dict('defect_dataset.hdict', [], DLDataset)
* 创建分割模型
create_dl_model_segmentation('unet', 2, Dict, DLSegModelHandle)
* 数据集预处理
preprocess_dl_dataset(DLDataset, 'preprocessed/', [], PreprocessParam)
* 模型训练
create_dl_train_param(DLSegModelHandle, 100, [], [], TrainParam)
train_dl_model(DLSegModelHandle, TrainParam, 0, [])
* 推理预测
apply_dl_model(DLSegModelHandle, ImagePreprocessed, [], [], DLResult)
* 获取分割结果
get_dict_object(Object, DLResult, 'segmentation_image')
第九十九节:工业测量技术深度解析
二维测量实现[33]
亚像素边缘提取
* 亚像素边缘检测
edges_sub_pix(Image, Edges, 'canny', 1, 20, 40)
* 直线拟合
fit_line_contour_xld(Edges, 'regression', 0, 0, 5, 2, RowBegin, ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)
* 直线间距离计算
distance_pl(Row1, Col1, Row2, Col2, RowBegin, ColBegin, RowEnd, ColEnd, Distance)
* 直线夹角计算
angle_ll(RowBegin, ColBegin, RowEnd, ColEnd, Row1, Col1, Row2, Col2, Angle)
测量助手自动生成
* 创建测量矩形
gen_measure_rectangle2(100, 200, 0, 50, 20, 640, 480, 'bilinear', MeasureHandle)
* 边缘对测量
measure_pairs(Image, MeasureHandle, 1.0, 20, 'positive', 'all',
RowEdge, ColEdge, Amplitude, Distance, IntraDistance, InterDistance)
* 计算测量结果
for Index := 0 to |Distance|-1 by 1
Width[Index] := Distance[Index]
endfor
三维测量技术
基于双目视觉的测量
* 双目3D重建
calibrate_stereo_cameras(Caltab, CalibParam1, CalibParam2, NFinalPose1, NFinalPose2, c1Pc2, Errors)
* 视差计算
stereo_match(Image1Rect, Image2Rect, Disparity, Score, 'ncc', 15, 5, 5, 1, 0, 'none', 'false')
* 3D坐标重建
disparity_image_to_xyz(Disparity, CalibParam1, Row, Col, Z, X, Y)
* 3D测量计算
distance_3d_point_point(X[0], Y[0], Z[0], X[1], Y[1], Z[1], Distance3D)
第一百节:多相机系统集成
多相机标定技术[6]
双目标定实现
* 创建双目标定模型
create_calib_data('calibration_object', 2, 1, CalibDataID)
* 设置两相机初始内参
set_calib_data_cam_param(CalibDataID, 0, 'area_scan_polynomial', CamParam1)
set_calib_data_cam_param(CalibDataID, 1, 'area_scan_polynomial', CamParam2)
* 同步采集标定图像
for Index := 1 to 12 by 1
grab_image_async(Image1, AcqHandle1, -1)
grab_image_async(Image2, AcqHandle2, -1)
find_calib_object(Image1, CalibDataID, 0, 0, Index, [])
find_calib_object(Image2, CalibDataID, 1, 0, Index, [])
endfor
* 执行双目标定
calibrate_cameras(CalibDataID, Errors)
* 获取相机间关系
get_calib_data(CalibDataID, 'camera', 1, 'extrinsic_poses', Cam1ToCam2Pose)
蜂窝标定板应用[30]
* 创建蜂窝标定板
create_caltab(10, 10, 0.008, 0.3,
[50, 50, 100, 100, 150, 150, 200, 200, 250, 250, 50, 150, 250, 350, 450],
'positive', 'hexagonal_caltab.ps', 'hexagonal_caltab.descr')
* 蜂窝标定优势:不需要全部拍全,至少找到一个finder即可
find_calib_object(Image1, CalibDataID, 0, 0, Index, [])
图像拼接与配准[19]
特征点提取与匹配
* 角点提取
points_foerstner(Image1, 1, 200, 3, 'gauss', 1, 0, 'true', Row1, Col1, JI1, COV1, PSI1)
points_foerstner(Image2, 1, 200, 3, 'gauss', 1, 0, 'true', Row2, Col2, JI2, COV2, PSI2)
* 匹配矩阵计算
proj_match_points_ransac(Image1, Image2, Row1, Col1, Row2, Col2,
'ncc', 15, 0.5, 'gold_standard', 5, 0.99,
HomMat2D, Points1, Points2)
* 图像拼接
gen_projective_mosaic(Image1, Image2, MosaicImage, HomMat2D, 1, 600, 600, 'default')
第一百零一节:运动控制系统集成
机器人控制接口
爱普森机器人TCP通信[25]
public class EpsonRobotController
{
private NetworkStream networkStream;
private TcpClient tcpClient;
public bool ConnectRobot(string ip, int port)
{
try
{
tcpClient = new TcpClient(ip, port);
networkStream = tcpClient.GetStream();
// 初始化通信
SendCommand("Motor On");
SendCommand("Speed 50");
SendCommand("Accel 50, 50");
return true;
}
catch (Exception ex)
{
Console.WriteLine($"机器人连接失败: {ex.Message}");
return false;
}
}
public void SendCommand(string command)
{
command += "\r\n"; // 必须添加回车换行[25]
byte[] data = Encoding.ASCII.GetBytes(command);
networkStream.Write(data, 0, data.Length);
// 等待响应
byte[] response = new byte[1024];
int bytesRead = networkStream.Read(response, 0, response.Length);
string result = Encoding.ASCII.GetString(response, 0, bytesRead);
Console.WriteLine($"发送: {command} 响应: {result}");
}
public void MoveTo(double x, double y, double z, double u = 0)
{
string command = $"MoveJ XY({x:F2}, {y:F2}, {z:F2}, U{u:F1})";
SendCommand(command);
}
public void SuckOn(int toolNo = 8)
{
SendCommand($"On {toolNo}"); // 开启吸气[25]
}
public void SuckOff(int toolNo = 8)
{
SendCommand($"Off {toolNo}"); // 关闭吸气
}
}
四轴运动控制
雷赛DMC2410控制[9]
* 运动控制初始化
open_dmc2410('PCI', 0, DMC2410Handle)
* 设置运动参数
set_axis_status(0, 1) * 开启第一轴
* JOG运动
start_jog(0, 1, 1000) * 开始JOG运动
stop_jog(0, 1) * 停止JOG运动
* 点位运动
set_target_position(0, X, Y)
start_point_move(0, 1)
* 回零运动[9]
home_move(0, 1)
* IO控制
set_output_bit(DMC2410Handle, 0, 8, 1) * 开启电磁阀
set_output_bit(DMC2410Handle, 0, 8, 0) * 关闭电磁阀
第一百零二节:工业数据管理与存储
数据库设计模式
生产数据存储结构
-- 产品信息表
CREATE TABLE Products (
ProductID INT PRIMARY KEY,
ProductName VARCHAR(100),
ProductType VARCHAR(50),
BatchNo VARCHAR(50),
CreateTime DATETIME,
CreateUser VARCHAR(50)
);
-- 检测结果表
CREATE TABLE InspectionResults (
ResultID INT PRIMARY KEY,
ProductID INT,
CameraID INT,
ResultType VARCHAR(20), -- 'PASS', 'FAIL', 'REWORK'
Confidence FLOAT,
DefectType VARCHAR(50),
DefectArea FLOAT,
ImagePath VARCHAR(200),
ProcessTime INT, -- 处理时间(ms)
CreateTime DATETIME,
FOREIGN KEY (ProductID) REFERENCES Products(ProductID)
);
-- 设备状态表
CREATE TABLE EquipmentStatus (
EquipmentID INT PRIMARY KEY,
EquipmentName VARCHAR(100),
Status VARCHAR(20), -- 'RUNNING', 'STOPPED', 'ERROR'
Temperature FLOAT,
LastMaintenance DATETIME,
NextMaintenance DATETIME,
CreateTime DATETIME
);
C#数据访问层
public class InspectionDataService
{
private string connectionString = ConfigurationManager.ConnectionStrings["DBConnection"].ConnectionString;
public void SaveInspectionResult(InspectionResult result)
{
using (SqlConnection conn = new SqlConnection(connectionString))
{
conn.Open();
string sql = @"INSERT INTO InspectionResults
(ProductID, CameraID, ResultType, Confidence, DefectType,
DefectArea, ImagePath, ProcessTime, CreateTime)
VALUES
(@ProductID, @CameraID, @ResultType, @Confidence, @DefectType,
@DefectArea, @ImagePath, @ProcessTime, @CreateTime)";
SqlCommand cmd = new SqlCommand(sql, conn);
cmd.Parameters.AddWithValue("@ProductID", result.ProductID);
cmd.Parameters.AddWithValue("@CameraID", result.CameraID);
cmd.Parameters.AddWithValue("@ResultType", result.ResultType);
cmd.Parameters.AddWithValue("@Confidence", result.Confidence);
cmd.Parameters.AddWithValue("@DefectType", result.DefectType ?? "");
cmd.Parameters.AddWithValue("@DefectArea", result.DefectArea);
cmd.Parameters.AddWithValue("@ImagePath", result.ImagePath);
cmd.Parameters.AddWithValue("@ProcessTime", result.ProcessTime);
cmd.Parameters.AddWithValue("@CreateTime", DateTime.Now);
cmd.ExecuteNonQuery();
}
}
public List<InspectionResult> GetDailyReport(DateTime date)
{
using (SqlConnection conn = new SqlConnection(connectionString))
{
conn.Open();
string sql = @"SELECT * FROM InspectionResults
WHERE CONVERT(date, CreateTime) = @Date
ORDER BY CreateTime";
SqlCommand cmd = new SqlCommand(sql, conn);
cmd.Parameters.AddWithValue("@Date", date.Date);
List<InspectionResult> results = new List<InspectionResult>();
SqlDataReader reader = cmd.ExecuteReader();
while (reader.Read())
{
results.Add(new InspectionResult
{
ResultID = reader.GetInt32(0),
ProductID = reader.GetInt32(1),
CameraID = reader.GetInt32(2),
ResultType = reader.GetString(3),
Confidence = reader.GetFloat(4),
DefectType = reader.IsDBNull(5) ? null : reader.GetString(5),
DefectArea = reader.GetFloat(6),
ImagePath = reader.GetString(7),
ProcessTime = reader.GetInt32(8),
CreateTime = reader.GetDateTime(9)
});
}
return results;
}
}
}
配置管理
INI文件配置[5]
public class ConfigManager
{
private string configFile = "system.ini";
public string GetConfig(string section, string key, string defaultValue = "")
{
StringBuilder value = new StringBuilder(255);
GetPrivateProfileString(section, key, defaultValue, value, 255, configFile);
return value.ToString();
}
public void SetConfig(string section, string key, string value)
{
WritePrivateProfileString(section, key, value, configFile);
}
// 相机配置
public int GetCameraExposure(int cameraId)
{
return int.Parse(GetConfig("CAMERA_" + cameraId, "EXPOSURE", "10000"));
}
public void SetCameraExposure(int cameraId, int exposure)
{
SetConfig("CAMERA_" + cameraId, "EXPOSURE", exposure.ToString());
}
// 运动控制配置
public double GetRobotSpeed()
{
return double.Parse(GetConfig("ROBOT", "SPEED", "50.0"));
}
[DllImport("kernel32.dll")]
private static extern int GetPrivateProfileString(string section, string key,
string def, StringBuilder retVal, int size, string filePath);
[DllImport("kernel32.dll")]
private static extern long WritePrivateProfileString(string section, string key,
string val, string filePath);
}
第一百零三节:系统调试与优化
性能分析与优化
图像处理性能监控
public class PerformanceMonitor
{
private Stopwatch stopwatch = new Stopwatch();
private Dictionary<string, List<long>> executionTimes = new Dictionary<string, List<long>>();
public void StartMeasurement(string operationName)
{
stopwatch.Restart();
}
public void EndMeasurement(string operationName)
{
stopwatch.Stop();
if (!executionTimes.ContainsKey(operationName))
{
executionTimes[operationName] = new List<long>();
}
executionTimes[operationName].Add(stopwatch.ElapsedMilliseconds);
}
public void PrintPerformanceReport()
{
Console.WriteLine("\n=== 性能报告 ===");
foreach (var kvp in executionTimes)
{
string operationName = kvp.Key;
List<long> times = kvp.Value;
if (times.Count > 0)
{
double avgTime = times.Average();
double maxTime = times.Max();
double minTime = times.Min();
Console.WriteLine($"{operationName}:");
Console.WriteLine($" 平均耗时: {avgTime:F2} ms");
Console.WriteLine($" 最大耗时: {maxTime} ms");
Console.WriteLine($" 最小耗时: {minTime} ms");
Console.WriteLine($" 执行次数: {times.Count}");
}
}
}
}
内存使用优化
public class MemoryOptimizer
{
private WeakReference garbageCollector = new WeakReference(new object());
public void OptimizeImageProcessing()
{
// 及时释放大图像
HObject largeImage = new HObject();
try
{
HOperator.ReadImage(out largeImage, "large_image.tif");
ProcessImage(largeImage);
}
finally
{
largeImage.Dispose(); // 及时释放
GC.Collect(); // 强制垃圾回收
GC.WaitForPendingFinalizers();
}
}
public void OptimizeArrayProcessing()
{
// 使用数组池减少内存分配
ArrayPool<double> arrayPool = ArrayPool<double>.Shared();
double[] buffer = arrayPool.Rent(1024);
try
{
// 处理数据
ProcessData(buffer);
}
finally
{
arrayPool.Return(buffer);
}
}
}
错误处理与诊断
异常处理机制
public class HalconExceptionHandler
{
public static void HandleHalconException(HOperatorException ex)
{
string errorCode = ex.Message;
switch (errorCode)
{
case "H_MSG_FAIL":
HandleOperationFailure(ex);
break;
case "H_MSG_NOT_FOUND":
HandleNotFoundError(ex);
break;
case "H_MSG_WRONG_TYPE":
HandleTypeError(ex);
break;
default:
HandleGenericError(ex);
break;
}
}
private static void HandleOperationFailure(HOperatorException ex)
{
// 记录详细错误信息
Logger.Error($"Halcon操作失败: {ex.Message}", ex);
// 尝试恢复操作
if (ex.Message.Contains("阈值设置不当"))
{
// 自动调整阈值重试
AutoAdjustThreshold();
}
else if (ex.Message.Contains("ROI无效"))
{
// 重新设置ROI
ResetROI();
}
}
private static void AutoAdjustThreshold()
{
Logger.Info("尝试自动调整阈值...");
// 实现自动阈值调整逻辑
}
private static void ResetROI()
{
Logger.Info("重新设置ROI...");
// 实现ROI重置逻辑
}
}
第一百零四节:工业物联网集成
设备数据采集
传感器数据集成
public class IoTDataCollector
{
private ModbusRTU modbusRTU;
private Timer dataCollectionTimer;
public IoTDataCollector()
{
modbusRTU = new ModbusRTU();
dataCollectionTimer = new Timer();
}
public void StartDataCollection()
{
// 连接设备
if (modbusRTU.Connect("COM3", 9600))
{
// 每秒采集一次数据
dataCollectionTimer.Interval = 1000;
dataCollectionTimer.Elapsed += CollectSensorData;
dataCollectionTimer.Start();
}
}
private void CollectSensorData(object sender, ElapsedEventArgs e)
{
try
{
// 采集温度传感器数据
ushort[] tempData = modbusRTU.ReadHoldingRegisters(40001, 1);
double temperature = tempData[0] / 10.0; // 温度值放大10倍
// 采集压力传感器数据
ushort[] pressureData = modbusRTU.ReadHoldingRegisters(40002, 1);
double pressure = pressureData[0] / 100.0; // 压力值放大100倍
// 采集设备状态
bool[] statusData = modbusRTU.ReadCoils(00001, 8);
// 数据上传到云端
UploadToCloud(temperature, pressure, statusData);
// 本地存储
SaveToLocalDatabase(temperature, pressure, statusData);
}
catch (Exception ex)
{
Logger.Error($"数据采集失败: {ex.Message}");
}
}
private async void UploadToCloud(double temperature, double pressure, bool[] status)
{
try
{
var sensorData = new
{
DeviceId = "PRODUCTION_LINE_01",
Timestamp = DateTime.Now,
Temperature = temperature,
Pressure = pressure,
EquipmentStatus = status.Select(s => s ? "ON" : "OFF").ToArray()
};
string jsonData = JsonConvert.SerializeObject(sensorData);
// 上传到云端MQTT
using (var client = new MqttClient("broker.mqtt-cloud.com"))
{
client.Connect("production_device_01");
client.Publish("factory/sensor/data", Encoding.UTF8.GetBytes(jsonData));
}
}
catch (Exception ex)
{
Logger.Error($"云端上传失败: {ex.Message}");
}
}
}
实时监控仪表板
<!DOCTYPE html>
<html>
<head>
<title>生产监控系统</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<style>
.dashboard-container {
display: grid;
grid-template-columns: 1fr 1fr;
grid-gap: 20px;
padding: 20px;
}
.sensor-card {
background: white;
border-radius: 10px;
padding: 20px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
.status-indicator {
width: 20px;
height: 20px;
border-radius: 50%;
display: inline-block;
margin-right: 10px;
}
.status-good { background-color: #4CAF50; }
.status-warning { background-color: #FF9800; }
.status-error { background-color: #F44336; }
</style>
</head>
<body>
<div class="dashboard-container">
<div class="sensor-card">
<h3>温度监控</h3>
<div class="status-indicator status-good"></div>
<span>正常</span>
<canvas id="tempChart"></canvas>
</div>
<div class="sensor-card">
<h3>压力监控</h3>
<div class="status-indicator status-warning"></div>
<span>偏高</span>
<canvas id="pressureChart"></canvas>
</div>
<div class="sensor-card">
<h3>设备状态</h3>
<div id="equipmentStatus"></div>
</div>
<div class="sensor-card">
<h3>生产统计</h3>
<canvas id="productionChart"></canvas>
</div>
</div>
<script>
// WebSocket连接
const ws = new WebSocket('ws://localhost:8080/monitor');
ws.onmessage = function(event) {
const data = JSON.parse(event.data);
updateDashboard(data);
};
function updateDashboard(data) {
// 更新温度图表
updateChart('tempChart', data.temperature);
// 更新压力图表
updateChart('pressureChart', data.pressure);
// 更新设备状态
updateEquipmentStatus(data.equipmentStatus);
// 更新生产统计
updateProductionStats(data.production);
}
function updateChart(canvasId, value) {
const ctx = document.getElementById(canvasId);
// Chart.js更新逻辑
}
function updateEquipmentStatus(status) {
const container = document.getElementById('equipmentStatus');
container.innerHTML = status.map(item =>
`<div class="equipment-item">
<span>${item.name}</span>
<span class="status-indicator status-${item.status.toLowerCase()}"></span>
</div>`
).join('');
}
</script>
</body>
</html>
第一百零五节:系统集成与部署
容器化部署方案
Docker容器配置
# Dockerfile
FROM mcr.microsoft.com/dotnet/aspnet:6.0 AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443
FROM mcr.microsoft.com/dotnet/sdk:6.0 AS build
WORKDIR /src
COPY ["HalconVisionSystem.csproj", "HalconVisionSystem/"]
RUN dotnet restore "HalconVisionSystem/HalconVisionSystem.csproj"
COPY . .
WORKDIR "/src/HalconVisionSystem"
RUN dotnet build "HalconVisionSystem.csproj" -c Release -o /app/build
FROM build AS publish
RUN dotnet publish "HalconVisionSystem.csproj" -c Release -o /app/publish
FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "HalconVisionSystem.dll"]
Docker Compose配置
# docker-compose.yml
version: '3.8'
services:
halcon-vision:
build: .
ports:
- "8080:80"
- "8443:443"
volumes:
- ./config:/app/config
- ./logs:/app/logs
- ./images:/app/images
environment:
- ConnectionStrings__DefaultConnection=Host=postgres;Database=halcon_vision;Username=postgres;Password=password
- HALCON_ROOT=/opt/halcon
depends_on:
- postgres
- redis
networks:
- halcon-network
postgres:
image: postgres:13
environment:
POSTGRES_DB: halcon_vision
POSTGRES_USER: postgres
POSTGRES_PASSWORD: password
volumes:
- postgres_data:/var/lib/postgresql/data
networks:
- halcon-network
redis:
image: redis:6-alpine
volumes:
- redis_data:/data
networks:
- halcon-network
nginx:
image: nginx:alpine
ports:
- "80:80"
- "443:443"
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf
- ./ssl:/etc/nginx/ssl
depends_on:
- halcon-vision
networks:
- halcon-network
volumes:
postgres_data:
redis_data:
networks:
halcon-network:
driver: bridge
微服务架构设计
服务拆分策略
// 图像处理服务
public class ImageProcessingService : IImageProcessingService
{
private readonly IHImageProcessor _imageProcessor;
public async Task<ProcessingResult> ProcessImageAsync(ProcessImageRequest request)
{
var stopwatch = Stopwatch.StartNew();
try
{
// 图像预处理
var preprocessedImage = await _imageProcessor.PreprocessAsync(request.ImageData);
// 缺陷检测
var defectResult = await _imageProcessor.DetectDefectsAsync(preprocessedImage);
// 质量分类
var classificationResult = await _imageProcessor.ClassifyQualityAsync(defectResult);
stopwatch.Stop();
return new ProcessingResult
{
DefectRegions = defectResult.Regions,
QualityGrade = classificationResult.Grade,
Confidence = classificationResult.Confidence,
ProcessingTime = stopwatch.ElapsedMilliseconds
};
}
catch (Exception ex)
{
Logger.Error($"图像处理失败: {ex.Message}");
throw new ProcessingException("图像处理失败", ex);
}
}
}
// 设备管理服务
public class DeviceManagementService : IDeviceManagementService
{
private readonly IDeviceRepository _deviceRepository;
private readonly IMqttService _mqttService;
public async Task<DeviceStatus> GetDeviceStatusAsync(int deviceId)
{
var device = await _deviceRepository.GetByIdAsync(deviceId);
// 检查设备连接状态
var connectionStatus = await CheckDeviceConnectionAsync(device);
// 获取设备参数
var deviceParams = await GetDeviceParametersAsync(device);
// 发布状态变更
await _mqttService.PublishDeviceStatusAsync(deviceId, connectionStatus, deviceParams);
return new DeviceStatus
{
DeviceId = deviceId,
ConnectionStatus = connectionStatus.IsConnected,
LastHeartbeat = DateTime.Now,
Parameters = deviceParams
};
}
}
系统监控与告警
实时监控系统
public class SystemMonitor
{
private readonly IMetricsCollector _metricsCollector;
private readonly IAlertService _alertService;
private Timer monitoringTimer;
public void StartMonitoring()
{
monitoringTimer = new Timer();
monitoringTimer.Interval = 5000; // 5秒检查一次
monitoringTimer.Elapsed += PerformSystemCheck;
monitoringTimer.Start();
}
private async void PerformSystemCheck(object sender, ElapsedEventArgs e)
{
try
{
// 检查CPU使用率
var cpuUsage = await GetCpuUsageAsync();
if (cpuUsage > 80)
{
await _alertService.SendAlertAsync("CPU使用率过高", $"当前CPU使用率: {cpuUsage}%");
}
// 检查内存使用
var memoryUsage = await GetMemoryUsageAsync();
if (memoryUsage > 85)
{
await _alertService.SendAlertAsync("内存使用率过高", $"当前内存使用率: {memoryUsage}%");
}
// 检查磁盘空间
var diskUsage = await GetDiskUsageAsync();
if (diskUsage > 90)
{
await _alertService.SendAlertAsync("磁盘空间不足", $"当前磁盘使用率: {diskUsage}%");
}
// 检查数据库连接
var dbStatus = await CheckDatabaseConnectionAsync();
if (!dbStatus.IsHealthy)
{
await _alertService.SendAlertAsync("数据库连接异常", dbStatus.ErrorMessage);
}
// 检查相机连接状态
await CheckCameraConnectionsAsync();
// 检查网络延迟
await CheckNetworkLatencyAsync();
}
catch (Exception ex)
{
Logger.Error($"系统监控异常: {ex.Message}");
}
}
private async Task CheckCameraConnectionsAsync()
{
var cameras = await _deviceRepository.GetCamerasAsync();
foreach (var camera in cameras)
{
var isConnected = await TestCameraConnectionAsync(camera);
if (!isConnected)
{
await _alertService.SendAlertAsync("相机离线", $"相机 {camera.Name} 离线");
}
}
}
}
结语
通过这30节深入的技术学习,我们构建了一个完整的工业级视觉系统知识体系。从基础的图像处理算法到复杂的3D视觉技术,从传统的机器学习方法到前沿的深度学习应用,从单机系统到云端集成,每个知识点都是现代工业4.0智能制造的重要组成部分。
核心技能总结:
- 算法能力:掌握图像处理、机器学习、深度学习核心技术
- 工程能力:系统设计、性能优化、错误处理与恢复
- 集成能力:硬件选型、通信协议、数据库设计、微服务架构
- 运维能力:监控告警、容器化部署、自动化运维
未来发展方向:
- 边缘AI计算与5G通信融合
- 数字孪生与虚拟调试技术
- 自适应学习与持续优化
- 人机协作与安全防护
在工业智能化的浪潮中,掌握这些核心技术将让您成为推动制造业数字化转型的重要力量。
学习建议:理论学习与项目实践相结合,持续关注技术发展动态,在实际项目中验证和深化所学知识。