人工智能学习:LR和SVM的联系与区别?

LR和SVM的联系与区别?

相同点:

(1) LR和SVM都可以处理分类问题 ,且--- 般都用于处理线性二 分类问题(在改进的情况下可以处理多分类问题)

(2)两个方 法都可以增加不同的正则化项 ,如L1、 L2等等。所以在很多实验中 ,两种算法的结果是很接近的。

区别:

(1) LR是参数模型, SVM是非参数模型。

(2)从目 标函数来看 ,区别在于逻辑回归采用 的是Logistical Loss ,SVM采用 的是hinge loss.这两个损失函数的目 的都是增加对分类影响较大 的数据点的权重 ,减少与分类关系较小 的数据点的权重。

(3) SVM的处理方 法是只考虑Support Vectors ,也就是和分类最相关的少数点 ,去学习分类器。 而逻辑回归通过 非 线性映射 ,大大 减小 了离分类平面 较远的点的权重 ,相对提升了与分类最相关的数据点的权重。

(4)逻辑回归相对来说模型更简单,好理解 ,特别是大 规模线性分类时比 较方 便。而SVM的理解和优化相对来说 复杂--- 些, SVM转化为对偶问题后,分类只需要计算与少数几 个支 持向量的距离,这个在进行 复杂核函数计算时优势 很明显,能够大大 简化模型和计算。

(5) Logic能做的SVM能做 ,但可能在准确率上有问题, SVM能做的Logic有的做不了。

相关推荐
LiJieNiub20 小时前
YOLOv3:目标检测领域的经典革新
人工智能·计算机视觉·目标跟踪
yanxing.D20 小时前
OpenCV轻松入门_面向python(第六章 阈值处理)
人工智能·python·opencv·计算机视觉
霍格沃兹测试开发学社测试人社区21 小时前
新手指南:通过 Playwright MCP Server 为 AI Agent 实现浏览器自动化能力
运维·人工智能·自动化
JJJJ_iii21 小时前
【机器学习01】监督学习、无监督学习、线性回归、代价函数
人工智能·笔记·python·学习·机器学习·jupyter·线性回归
Han.miracle1 天前
数据结构——二叉树的从前序与中序遍历序列构造二叉树
java·数据结构·学习·算法·leetcode
qq_416276421 天前
LOFAR物理频谱特征提取及实现
人工智能
余俊晖1 天前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析
mit6.8241 天前
前后缀分解
算法
你好,我叫C小白1 天前
C语言 循环结构(1)
c语言·开发语言·算法·while·do...while
Akamai中国1 天前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云计算·云服务