YOLOv5实战-GPU版本的pytorch虚拟环境配置

1.pytorch

虚拟环境可以使各个深度学习框架之间不发生冲突,所以一般是用虚拟环境的(因为我看b站上很多不是教你配虚拟环境的)

我的电脑配置是Driver Version: 532.03 CUDA Version: 12.1的Windows系统4060

属于比较新的显卡配置,目前网上相关资料比较少,如果你和我加粗文字配置一样的话可以直接抄

PS:

其实TensorFlow环境也可以,但是本人实践下来发现不仅操作多,而且遇到的问题一堆无法解决,反复喂给DS还是无济于事,所以索性用pytorch了,不过新手建议用pytorch,公司的项目落地建议用TensorFlow

win+r打开cmd

查看你的配置nvidia-smi

如果你之前有配置过虚拟环境但是失败了,可以先清理一下

删除并重建虚拟环境(我这里的虚拟环境命名为dejahu)

复制代码
# 退出当前环境
conda deactivate
# 删除旧环境
conda remove -n dejahu --all -y
# 创建新环境
conda create -n dejahu python=3.10 -y
conda activate dejahu

安装当前最新的、支持CUDA 12.1的版本2.5.1+cu121:

复制代码
pip install torch==2.5.1+cu121 torchvision==0.20.1+cu121 torchaudio==2.5.1+cu121 --index-url https://download.pytorch.org/whl/cu121

如果存在这种情况

复制代码
WARNING: Skipping torch-cpu as it is not installed.
WARNING: Skipping torchaudio-cpu as it is not installed.
WARNING: Skipping torchvision-cpu as it is not installed.

你可以尝试核级清理

复制代码
pip uninstall torch torchvision torchaudio torch-cpu torchaudio-cpu torchvision-cpu -y

然后查看

复制代码
pip list --format=freeze | findstr "torch"

pip show torch

如果没有任何输出说明已经清理干净,然后再执行pip那行

然后进入python环境输入一下代码查看

复制代码
import torch
print(f"PyTorch版本: {torch.__version__}") 
print(f"CUDA是否可用: {torch.cuda.is_available()}")  重点看这个输出,是True就没问题
if torch.cuda.is_available():
    print(f"GPU设备名称: {torch.cuda.get_device_name(0)}")  
    print(f"CUDA版本: {torch.version.cuda}") 

如果还有问题,建议看看其他文章(但是都是几年前的文章了,很多不适用)

2.其他包

我这里是python3.10版本的

复制代码
pip install pycocotools


# 安装兼容 Python 3.10 的版本
pip install numpy==1.23.5  
pip install setuptools==65.5.0  

# 然后安装其他包
pip install matplotlib==3.6.0  
pip install opencv-python==4.7.0.72  
pip install PyYAML==6.0
pip install requests==2.28.1
pip install tqdm==4.64.1
pip install tensorboard==2.11.0
pip install pandas==1.5.2
pip install seaborn==0.12.2
pip install Pillow==9.4.0
pip install protobuf==3.20.3

# 最后安装 PyQt5(使用预编译版本)
pip install PyQt5==5.15.7 --prefer-binary -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pyqt5-sip==12.11.0 --prefer-binary -i https://pypi.tuna.tsinghua.edu.cn/simple
相关推荐
会飞的老朱1 天前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º1 天前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee1 天前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º1 天前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys1 天前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56781 天前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子1 天前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能1 天前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144871 天前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile1 天前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算