基于机器学习的P2P网贷平台信用违约预测模型

使用平台提供的借款人信息(年龄、收入、历史信用等)和借款信息,构建一个二分类模型来预测借款人是否会违约。重点解决类别不平衡问题和模型可解释性。

逻辑回归、随机森林、XGBoost、SMOTE过采样、模型评估(AUC, KS, F1-Score)。

  1. 生成模拟数据集。
  2. 数据预处理(缺失值处理、编码、标准化)。
  3. 应用SMOTE处理类别不平衡。
  4. 构建逻辑回归、随机森林和XGBoost模型。
  5. 评估模型性能(AUC、KS、F1-Score等)。
  6. 实现模型可解释性分析(如SHAP值)。
  7. 保存和展示结果,包括图表和评估指标。

比如:基于分层架构的图书管理系统设计与实现

java 复制代码
// 用户管理模块接口示例
public interface UserService {
    @ApiOperation("用户注册")
    Result<UserDTO> register(@Valid @RequestBody RegisterRequest request);
    
    @ApiOperation("修改密码")
    Result<Void> changePassword(@RequestHeader String token, 
                               @Valid @RequestBody PasswordChangeRequest request);
}

// 图书借阅模块实现
@Service
public class BookBorrowServiceImpl implements BookBorrowService {
    @Autowired
    private BookRepository bookRepository;
    
    @Transactional(rollbackFor = Exception.class)
    public Result<BorrowRecordDTO> borrowBook(Long userId, String isbn) {
        // 1. 校验图书状态
        Book book = bookRepository.findByIsbn(isbn)
            .orElseThrow(() -> new BusinessException("图书不存在"));
        
        // 2. 最佳适应算法分配副本
        BookCopy copy = selectOptimalCopy(book);
        
        // 3. 创建借阅记录
        BorrowRecord record = new BorrowRecord();
        record.setUserId(userId);
        record.setCopyId(copy.getId());
        record.setBorrowTime(LocalDateTime.now());
        record.setDueTime(calculateDueTime(userId));
        
        // 4. 更新库存状态
        copy.setStatus(BookCopyStatus.BORROWED);
        bookRepository.saveCopy(copy);
        
        return Result.success(BorrowRecordConverter.convert(record));
    }
}

核心表结构

sql 复制代码
-- 图书表
CREATE TABLE `book` (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `isbn` varchar(20) NOT NULL COMMENT '国际标准书号',
  `title` varchar(100) NOT NULL COMMENT '书名',
  `author` varchar(50) NOT NULL COMMENT '作者',
  `publisher` varchar(100) NOT NULL COMMENT '出版社',
  `publish_date` date DEFAULT NULL COMMENT '出版日期',
  `category_id` bigint DEFAULT NULL COMMENT '分类ID',
  `total_copies` int NOT NULL DEFAULT '0' COMMENT '总副本数',
  `available_copies` int NOT NULL DEFAULT '0' COMMENT '可用副本数',
  PRIMARY KEY (`id`),
  UNIQUE KEY `idx_isbn` (`isbn`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

-- 借阅记录表
CREATE TABLE `borrow_record` (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `user_id` bigint NOT NULL COMMENT '用户ID',
  `copy_id` bigint NOT NULL COMMENT '图书副本ID',
  `borrow_time` datetime NOT NULL COMMENT '借出时间',
  `due_time` datetime NOT NULL COMMENT '应还时间',
  `return_time` datetime DEFAULT NULL COMMENT '实际归还时间',
  `status` tinyint NOT NULL DEFAULT '0' COMMENT '状态:0-借出中 1-已归还 2-逾期',
  PRIMARY KEY (`id`),
  KEY `idx_user` (`user_id`),
  KEY `idx_copy` (`copy_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

智能推荐算法

java 复制代码
// 基于协同过滤的图书推荐
public List<BookDTO> recommendBooks(Long userId, int limit) {
    // 1. 获取用户历史借阅记录
    List<BorrowRecord> records = borrowRecordRepository.findByUserId(userId);
    
    // 2. 计算图书相似度矩阵
    Map<Long, Map<Long, Double>> similarityMatrix = calculateBookSimilarity();
    
    // 3. 生成推荐列表
    return records.stream()
        .flatMap(record -> {
            Long bookId = record.getCopy().getBookId();
            return similarityMatrix.getOrDefault(bookId, Collections.emptyMap())
                .entrySet().stream()
                .filter(e -> !hasBorrowed(userId, e.getKey()))
                .sorted(Map.Entry.<Long, Double>comparingByValue().reversed())
                .limit(limit);
        })
        .map(this::convertToDTO)
        .collect(Collectors.toList());
}

并发控制机制

java 复制代码
// 使用Redis实现分布式锁
public class RedisDistributedLock {
    private final StringRedisTemplate redisTemplate;
    
    public boolean tryLock(String lockKey, String requestId, long expireTime) {
        Boolean success = redisTemplate.opsForValue()
            .setIfAbsent(lockKey, requestId, expireTime, TimeUnit.SECONDS);
        return Boolean.TRUE.equals(success);
    }
    
    public boolean releaseLock(String lockKey, String requestId) {
        String value = redisTemplate.opsForValue().get(lockKey);
        if (requestId.equals(value)) {
            return redisTemplate.delete(lockKey);
        }
        return false;
    }
}

// 在借阅服务中使用
@Transactional
public Result<Void> borrowWithLock(Long userId, String isbn) {
    String lockKey = "lock:book:" + isbn;
    String requestId = UUID.randomUUID().toString();
    
    try {
        if (!redisLock.tryLock(lockKey, requestId, 10)) {
            throw new BusinessException("操作频繁,请稍后再试");
        }
        
        // 核心借阅逻辑
        return borrowBook(userId, isbn);
    } finally {
        redisLock.releaseLock(lockKey, requestId);
    }
}
相关推荐
浮生如梦_17 小时前
图片转视频
图像处理·人工智能·计算机视觉·音视频
安全风信子17 小时前
03_用LLM写代码:从函数到项目的全流程
人工智能
ai智能获客_狐狐18 小时前
智能外呼产品架构组成
人工智能·算法·自然语言处理·架构·语音识别
安全风信子18 小时前
05_用LLM创建知识库:从文档到智能问答系统
人工智能
金井PRATHAMA18 小时前
逻辑的回归——一阶谓词逻辑及其变体在自然语言处理深层语义分析中的作用与前瞻
人工智能·机器学习·自然语言处理·数据挖掘·回归·知识图谱
沫儿笙18 小时前
NACHI那智焊接机器人智能气阀
人工智能·机器人
半吊子全栈工匠18 小时前
企业AI应用的数据策略
人工智能
阿豪啊19 小时前
深入浅出:一文读懂国内外主流AI提示词(Prompt)框架
人工智能
春末的南方城市19 小时前
复旦&华为提出首个空间理解和生成统一框架UniUGG,支持参考图像和任意视图变换的 3D 场景生成和空间视觉问答 (VQA) 任务。
人工智能·科技·深度学习·计算机视觉·aigc
坐吃山猪20 小时前
Python-UV多环境管理
人工智能·python·uv