深入理解大语言模型(5)-关于token

到目前为止对 LLM 的描述中,我们将其描述为一次预测一个单词,但实际上还有一个更重要的技术细

节。即 LLM 实际上并不是重复预测下一个单词,而是重复预测下一个 token 。对于一个句子,语言模型会

先使用分词器将其拆分为一个个 token ,而不是原始的单词。对于生僻词,可能会拆分为多个 token 。

这样可以大幅降低字典规模,提高模型训练和推断的效率。例如,对于 "Learning new things is fun!" 这

句话,每个单词都被转换为一个 token ,而对于较少使用的单词,如 "Prompting as powerful

developer tool",单词 "prompting" 会被拆分为三个 token,即"prom"、"pt"和"ing"。

json 复制代码
# 为了更好展示效果,这里就没有翻译成中文的 Prompt
# 注意这里的字母翻转出现了错误,吴恩达老师正是通过这个例子来解释 token 的计算方式
response = get_completion("Take the letters in lollipop \
and reverse them")
print(response)

The reversed letters of "lollipop" are "pillipol".

但是,"lollipop" 反过来应该是 "popillol"。

但 分词方式也会对语言模型的理解能力产生影响 。当您要求 ChatGPT 颠倒 "lollipop" 的字母时,由于分词器

(tokenizer) 将 "lollipop" 分解为三个 token,即 "l"、"oll"、"ipop",因此 ChatGPT 难以正确输出字

母的顺序。这时可以通过在字母间添加分隔,让每个字母成为一个token,以帮助模型准确理解词中的字

母顺序。

json 复制代码
response = get_completion("""Take the letters in \
l-o-l-l-i-p-o-p and reverse them""")
print(response)

p-o-p-i-l-l-o-l

因此,语言模型以 token 而非原词为单位进行建模,这一关键细节对分词器的选择及处理会产生重大影

响。开发者需要注意分词方式对语言理解的影响,以发挥语言模型最大潜力。

❗❗❗ 对于英文输入,一个 token 一般对应 4 个字符或者四分之三个单词;对于中文输入,一个

token 一般对应一个或半个词。不同模型有不同的 token 限制,需要注意的是,这里的 token 限制是输

入的 Prompt 和输出的 completion 的 token 数之和,因此输入的 Prompt 越长,能输出的

completion 的上限就越低。截至2023年,ChatGPT3.5-turbo 的 token 上限是 4096。

相关推荐
free-elcmacom几秒前
机器学习入门<6>BP神经网络揭秘:从自行车摔跤到吃一堑长一智的AI智慧
人工智能·python·深度学习·神经网络·机器学习
DARLING Zero two♡4 分钟前
浏览器里跑 AI 语音转写?Whisper Web + cpolar让本地服务跑遍全网
前端·人工智能·whisper
袁庭新9 分钟前
2025年11月总结
人工智能·aigc
代码输入中...11 分钟前
大模型项目实战:多领域智能应用开发
人工智能·机器学习·ai编程
科普瑞传感仪器21 分钟前
告别“盲打磨”:六维力传感器如何通过选型实现真正的机器人恒力控制?
人工智能·科技·ai·机器人·无人机
银空飞羽36 分钟前
让Trae SOLO全自主学习开发近期爆出的React RCE漏洞靶场并自主利用验证(CVE-2025-55182)
前端·人工智能·安全
图欧学习资源库37 分钟前
人工智能领域、图欧科技、IMYAI智能助手2025年10月更新月报
人工智能·科技
TextIn智能文档云平台1 小时前
怎么批量将扫描件变成文档?
人工智能·机器学习
paopao_wu1 小时前
ComfyUI遇上Z-Image(1):环境部署与AI图像生成快速体验
人工智能·ai·大模型·comfyui·z-image
大江东去浪淘尽千古风流人物1 小时前
【DSP】向量化操作的误差来源分析及其经典解决方案
linux·运维·人工智能·算法·vr·dsp开发·mr