贪心算法python

贪心算法的基本概念

贪心算法(Greedy Algorithm)是一种在每一步选择中都采取当前状态下最优(即局部最优)的决策,从而希望导致全局最优解的算法策略。贪心算法通常用于解决最优化问题,如最短路径、最小生成树、任务调度等。

贪心算法的特点

  • 局部最优选择:每一步都选择当前最优解,不考虑后续步骤的影响。
  • 无后效性:当前的选择不会影响后续步骤的选择。
  • 高效性:通常时间复杂度较低,适合解决大规模问题。
  • 不保证全局最优:在某些问题中,贪心算法可能无法得到全局最优解。

贪心算法的适用条件

贪心算法适用于满足以下两个条件的问题:

  1. 贪心选择性质:问题的全局最优解可以通过一系列局部最优选择得到。
  2. 最优子结构:问题的最优解包含其子问题的最优解。

贪心算法的经典问题

1. 活动选择问题

给定一组活动,每个活动有开始时间和结束时间,要求选择尽可能多的互不重叠的活动。

贪心策略:每次选择结束时间最早的活动。

python 复制代码
def activity_selection(start, finish):
    activities = list(zip(start, finish))
    activities.sort(key=lambda x: x[1])
    selected = [activities[0]]
    last_finish = activities[0][1]
    
    for activity in activities[1:]:
        if activity[0] >= last_finish:
            selected.append(activity)
            last_finish = activity[1]
    return selected
2. 霍夫曼编码

霍夫曼编码是一种用于数据压缩的贪心算法,通过构建最优前缀码来最小化编码长度。

贪心策略:每次合并频率最低的两个节点。

3. 最小生成树(Prim算法和Kruskal算法)

Prim算法和Kruskal算法都是贪心算法,用于构建图的最小生成树。

Prim算法:每次选择与当前树连接的最小权值边。

Kruskal算法:每次选择全局最小权值边,确保不形成环。

贪心算法的局限性

贪心算法并不总是能得到全局最优解。例如,在背包问题中,贪心算法可能无法得到最优解,除非问题满足特定条件(如分数背包问题)。

贪心算法的实现步骤

  1. 问题建模:将问题转化为适合贪心策略的形式。
  2. 选择贪心策略:确定每一步的局部最优选择标准。
  3. 验证贪心性质:确保贪心策略能导致全局最优解。
  4. 实现算法:编写代码实现贪心策略。

贪心算法与动态规划的区别

  • 贪心算法:每一步的选择不可回退,通常更高效。
  • 动态规划:保存子问题的解,避免重复计算,适用于有重叠子问题的情况。
相关推荐
小年糕是糕手3 小时前
【C++】类和对象(二) -- 构造函数、析构函数
java·c语言·开发语言·数据结构·c++·算法·leetcode
kupeThinkPoem4 小时前
跳表有哪些算法?
数据结构·算法
前端小L4 小时前
图论专题(二十一):并查集的“工程应用”——拔线重连,修复「连通网络」
数据结构·算法·深度优先·图论·宽度优先
88号技师4 小时前
2025年9月一区SCI-孤行尺蠖觅食优化算法Solitary Inchworm Foraging-附Matlab免费代码
开发语言·算法·数学建模·matlab·优化算法
前端小L4 小时前
图论专题(二十五):最小生成树(MST)——用最少的钱,连通整个世界「连接所有点的最小费用」
算法·矩阵·深度优先·图论·宽度优先
前端小L5 小时前
图论专题(二十三):并查集的“数据清洗”——解决复杂的「账户合并」
数据结构·算法·安全·深度优先·图论
CoovallyAIHub5 小时前
破局红外小目标检测:异常感知Anomaly-Aware YOLO以“俭”驭“繁”
深度学习·算法·计算机视觉
点云SLAM5 小时前
图论中邻接矩阵和邻接表详解
算法·图论·slam·邻接表·邻接矩阵·最大团·稠密图
啊董dong5 小时前
课后作业-2025年11月23号作业
数据结构·c++·算法·深度优先·noi
星释5 小时前
Rust 练习册 80:Grains与位运算
大数据·算法·rust