【目标检测】metrice_curve和loss_curve对比图可视化

代码如下:

py 复制代码
import warnings
warnings.filterwarnings('ignore')

import os
import pandas as pd
import numpy as np
import matplotlib.pylab as plt

pwd = os.getcwd()

names = ['model1', 'model2', 'model3','ours']

plt.figure(figsize=(10, 10))

plt.subplot(2, 2, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/precision(B)'] = data['metrics/precision(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/precision(B)'] = data['metrics/precision(B)'].fillna(data['metrics/precision(B)'].interpolate())
    plt.plot(data['metrics/precision(B)'], label=i)
plt.xlabel('epoch')
plt.title('precision')
plt.legend()

plt.subplot(2, 2, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/recall(B)'] = data['metrics/recall(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/recall(B)'] = data['metrics/recall(B)'].fillna(data['metrics/recall(B)'].interpolate())
    plt.plot(data['metrics/recall(B)'], label=i)
plt.xlabel('epoch')
plt.title('recall')
plt.legend()

plt.subplot(2, 2, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/mAP50(B)'] = data['metrics/mAP50(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/mAP50(B)'] = data['metrics/mAP50(B)'].fillna(data['metrics/mAP50(B)'].interpolate())
    plt.plot(data['metrics/mAP50(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5')
plt.legend()

plt.subplot(2, 2, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/mAP50-95(B)'] = data['metrics/mAP50-95(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/mAP50-95(B)'] = data['metrics/mAP50-95(B)'].fillna(data['metrics/mAP50-95(B)'].interpolate())
    plt.plot(data['metrics/mAP50-95(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5:0.95')
plt.legend()

plt.tight_layout()
plt.savefig('metrice_curve.png')
print(f'metrice_curve.png save in {pwd}/metrice_curve.png')

plt.figure(figsize=(15, 10))

plt.subplot(2, 3, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/box_loss'] = data['train/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/box_loss'] = data['train/box_loss'].fillna(data['train/box_loss'].interpolate())
    plt.plot(data['train/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/box_loss')
plt.legend()

plt.subplot(2, 3, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/dfl_loss'] = data['train/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/dfl_loss'] = data['train/dfl_loss'].fillna(data['train/dfl_loss'].interpolate())
    plt.plot(data['train/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/dfl_loss')
plt.legend()

plt.subplot(2, 3, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/cls_loss'] = data['train/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/cls_loss'] = data['train/cls_loss'].fillna(data['train/cls_loss'].interpolate())
    plt.plot(data['train/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/cls_loss')
plt.legend()

plt.subplot(2, 3, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/box_loss'] = data['val/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/box_loss'] = data['val/box_loss'].fillna(data['val/box_loss'].interpolate())
    plt.plot(data['val/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/box_loss')
plt.legend()

plt.subplot(2, 3, 5)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/dfl_loss'] = data['val/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/dfl_loss'] = data['val/dfl_loss'].fillna(data['val/dfl_loss'].interpolate())
    plt.plot(data['val/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/dfl_loss')
plt.legend()

plt.subplot(2, 3, 6)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/cls_loss'] = data['val/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/cls_loss'] = data['val/cls_loss'].fillna(data['val/cls_loss'].interpolate())
    plt.plot(data['val/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/cls_loss')
plt.legend()

plt.tight_layout()
plt.savefig('loss_curve.png')
print(f'loss_curve.png save in {pwd}/loss_curve.png')

可视化结果展示

相关推荐
Blossom.11818 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t1987512818 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技18 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe18 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen18 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿18 小时前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能
前端大卫18 小时前
【重磅福利】学生认证可免费领取 Gemini 3 Pro 一年
前端·人工智能
唯道行18 小时前
计算机图形学·23 Weiler-Athenton多边形裁剪算法
算法·计算机视觉·几何学·计算机图形学·opengl
汽车仪器仪表相关领域19 小时前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试
璞华Purvar19 小时前
地方产投集团数字化平台建设实战:从内控管理到决策赋能(璞华公开课第5期活动回顾)
大数据·人工智能