【目标检测】metrice_curve和loss_curve对比图可视化

代码如下:

py 复制代码
import warnings
warnings.filterwarnings('ignore')

import os
import pandas as pd
import numpy as np
import matplotlib.pylab as plt

pwd = os.getcwd()

names = ['model1', 'model2', 'model3','ours']

plt.figure(figsize=(10, 10))

plt.subplot(2, 2, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/precision(B)'] = data['metrics/precision(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/precision(B)'] = data['metrics/precision(B)'].fillna(data['metrics/precision(B)'].interpolate())
    plt.plot(data['metrics/precision(B)'], label=i)
plt.xlabel('epoch')
plt.title('precision')
plt.legend()

plt.subplot(2, 2, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/recall(B)'] = data['metrics/recall(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/recall(B)'] = data['metrics/recall(B)'].fillna(data['metrics/recall(B)'].interpolate())
    plt.plot(data['metrics/recall(B)'], label=i)
plt.xlabel('epoch')
plt.title('recall')
plt.legend()

plt.subplot(2, 2, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/mAP50(B)'] = data['metrics/mAP50(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/mAP50(B)'] = data['metrics/mAP50(B)'].fillna(data['metrics/mAP50(B)'].interpolate())
    plt.plot(data['metrics/mAP50(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5')
plt.legend()

plt.subplot(2, 2, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/mAP50-95(B)'] = data['metrics/mAP50-95(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/mAP50-95(B)'] = data['metrics/mAP50-95(B)'].fillna(data['metrics/mAP50-95(B)'].interpolate())
    plt.plot(data['metrics/mAP50-95(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5:0.95')
plt.legend()

plt.tight_layout()
plt.savefig('metrice_curve.png')
print(f'metrice_curve.png save in {pwd}/metrice_curve.png')

plt.figure(figsize=(15, 10))

plt.subplot(2, 3, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/box_loss'] = data['train/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/box_loss'] = data['train/box_loss'].fillna(data['train/box_loss'].interpolate())
    plt.plot(data['train/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/box_loss')
plt.legend()

plt.subplot(2, 3, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/dfl_loss'] = data['train/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/dfl_loss'] = data['train/dfl_loss'].fillna(data['train/dfl_loss'].interpolate())
    plt.plot(data['train/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/dfl_loss')
plt.legend()

plt.subplot(2, 3, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/cls_loss'] = data['train/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/cls_loss'] = data['train/cls_loss'].fillna(data['train/cls_loss'].interpolate())
    plt.plot(data['train/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/cls_loss')
plt.legend()

plt.subplot(2, 3, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/box_loss'] = data['val/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/box_loss'] = data['val/box_loss'].fillna(data['val/box_loss'].interpolate())
    plt.plot(data['val/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/box_loss')
plt.legend()

plt.subplot(2, 3, 5)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/dfl_loss'] = data['val/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/dfl_loss'] = data['val/dfl_loss'].fillna(data['val/dfl_loss'].interpolate())
    plt.plot(data['val/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/dfl_loss')
plt.legend()

plt.subplot(2, 3, 6)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/cls_loss'] = data['val/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/cls_loss'] = data['val/cls_loss'].fillna(data['val/cls_loss'].interpolate())
    plt.plot(data['val/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/cls_loss')
plt.legend()

plt.tight_layout()
plt.savefig('loss_curve.png')
print(f'loss_curve.png save in {pwd}/loss_curve.png')

可视化结果展示

相关推荐
温柔哥`22 分钟前
HiProbe-VAD:通过在免微调多模态大语言模型中探测隐状态实现视频异常检测
人工智能·语言模型·音视频
强化学习与机器人控制仿真39 分钟前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
机器之心1 小时前
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
人工智能·openai
Elastic 中国社区官方博客1 小时前
Elasticsearch:如何创建知识库并使用 AI Assistant 来配置 slack 连接器
大数据·人工智能·elasticsearch·搜索引擎·全文检索·信息与通信
Baihai_IDP1 小时前
分享一名海外独立开发者的 AI 编程工作流
人工智能·llm·ai编程
油炸小波1 小时前
02-AI应用开发平台Dify
人工智能·python·dify·coze
机器之心1 小时前
Gemini 3深夜来袭:力压GPT 5.1,大模型谷歌时代来了
人工智能·openai
菠菠萝宝2 小时前
【Java手搓RAGFlow】-1- 环境准备
java·开发语言·人工智能·llm·openai·rag
AndrewHZ2 小时前
【图像处理基石】如何从动漫参考图中提取色彩风格?
图像处理·人工智能·opencv·pillow·聚类算法·色彩风格·色彩分布
阿里云大数据AI技术2 小时前
PAI Physical AI Notebook详解3:基于仿真的导航模型训练
人工智能