【目标检测】metrice_curve和loss_curve对比图可视化

代码如下:

py 复制代码
import warnings
warnings.filterwarnings('ignore')

import os
import pandas as pd
import numpy as np
import matplotlib.pylab as plt

pwd = os.getcwd()

names = ['model1', 'model2', 'model3','ours']

plt.figure(figsize=(10, 10))

plt.subplot(2, 2, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/precision(B)'] = data['metrics/precision(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/precision(B)'] = data['metrics/precision(B)'].fillna(data['metrics/precision(B)'].interpolate())
    plt.plot(data['metrics/precision(B)'], label=i)
plt.xlabel('epoch')
plt.title('precision')
plt.legend()

plt.subplot(2, 2, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/recall(B)'] = data['metrics/recall(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/recall(B)'] = data['metrics/recall(B)'].fillna(data['metrics/recall(B)'].interpolate())
    plt.plot(data['metrics/recall(B)'], label=i)
plt.xlabel('epoch')
plt.title('recall')
plt.legend()

plt.subplot(2, 2, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/mAP50(B)'] = data['metrics/mAP50(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/mAP50(B)'] = data['metrics/mAP50(B)'].fillna(data['metrics/mAP50(B)'].interpolate())
    plt.plot(data['metrics/mAP50(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5')
plt.legend()

plt.subplot(2, 2, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/mAP50-95(B)'] = data['metrics/mAP50-95(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/mAP50-95(B)'] = data['metrics/mAP50-95(B)'].fillna(data['metrics/mAP50-95(B)'].interpolate())
    plt.plot(data['metrics/mAP50-95(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5:0.95')
plt.legend()

plt.tight_layout()
plt.savefig('metrice_curve.png')
print(f'metrice_curve.png save in {pwd}/metrice_curve.png')

plt.figure(figsize=(15, 10))

plt.subplot(2, 3, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/box_loss'] = data['train/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/box_loss'] = data['train/box_loss'].fillna(data['train/box_loss'].interpolate())
    plt.plot(data['train/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/box_loss')
plt.legend()

plt.subplot(2, 3, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/dfl_loss'] = data['train/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/dfl_loss'] = data['train/dfl_loss'].fillna(data['train/dfl_loss'].interpolate())
    plt.plot(data['train/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/dfl_loss')
plt.legend()

plt.subplot(2, 3, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/cls_loss'] = data['train/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/cls_loss'] = data['train/cls_loss'].fillna(data['train/cls_loss'].interpolate())
    plt.plot(data['train/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/cls_loss')
plt.legend()

plt.subplot(2, 3, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/box_loss'] = data['val/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/box_loss'] = data['val/box_loss'].fillna(data['val/box_loss'].interpolate())
    plt.plot(data['val/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/box_loss')
plt.legend()

plt.subplot(2, 3, 5)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/dfl_loss'] = data['val/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/dfl_loss'] = data['val/dfl_loss'].fillna(data['val/dfl_loss'].interpolate())
    plt.plot(data['val/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/dfl_loss')
plt.legend()

plt.subplot(2, 3, 6)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/cls_loss'] = data['val/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/cls_loss'] = data['val/cls_loss'].fillna(data['val/cls_loss'].interpolate())
    plt.plot(data['val/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/cls_loss')
plt.legend()

plt.tight_layout()
plt.savefig('loss_curve.png')
print(f'loss_curve.png save in {pwd}/loss_curve.png')

可视化结果展示

相关推荐
tiger1191 小时前
FPGA在AI时代的定位?
人工智能·fpga开发
EMQX1 小时前
ESP32 + MCP over MQTT:实现智能设备语音交互
人工智能·mqtt·语言模型·智能硬件
DisonTangor3 小时前
MiniMax 开源一个为极致编码与智能体工作流打造的迷你模型——MiniMax-M2
人工智能·语言模型·开源·aigc
Giser探索家5 小时前
无人机桥梁巡检:以“空天地”智慧之力守护交通生命线
大数据·人工智能·算法·安全·架构·无人机
不会学习的小白O^O5 小时前
双通道深度学习框架可实现从无人机激光雷达点云中提取橡胶树冠
人工智能·深度学习·无人机
恒点虚拟仿真5 小时前
虚拟仿真实训破局革新:打造无人机飞行专业实践教学新范式
人工智能·无人机·ai教学·虚拟仿真实训·无人机飞行·无人机专业虚拟仿真·无人机飞行虚拟仿真
鲜枣课堂5 小时前
华为最新光通信架构AI-OTN,如何应对AI浪潮?
人工智能·华为·架构
格林威6 小时前
AOI在新能源电池制造领域的应用
人工智能·数码相机·计算机视觉·视觉检测·制造·工业相机
dxnb226 小时前
Datawhale25年10月组队学习:math for AI+Task5解析几何
人工智能·学习
DooTask官方号6 小时前
DooTask 1.3.38 版本更新:MCP 服务器与 AI 工具深度融合,开启任务管理新体验
运维·服务器·人工智能·开源软件·dootask