【目标检测】metrice_curve和loss_curve对比图可视化

代码如下:

py 复制代码
import warnings
warnings.filterwarnings('ignore')

import os
import pandas as pd
import numpy as np
import matplotlib.pylab as plt

pwd = os.getcwd()

names = ['model1', 'model2', 'model3','ours']

plt.figure(figsize=(10, 10))

plt.subplot(2, 2, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/precision(B)'] = data['metrics/precision(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/precision(B)'] = data['metrics/precision(B)'].fillna(data['metrics/precision(B)'].interpolate())
    plt.plot(data['metrics/precision(B)'], label=i)
plt.xlabel('epoch')
plt.title('precision')
plt.legend()

plt.subplot(2, 2, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/recall(B)'] = data['metrics/recall(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/recall(B)'] = data['metrics/recall(B)'].fillna(data['metrics/recall(B)'].interpolate())
    plt.plot(data['metrics/recall(B)'], label=i)
plt.xlabel('epoch')
plt.title('recall')
plt.legend()

plt.subplot(2, 2, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/mAP50(B)'] = data['metrics/mAP50(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/mAP50(B)'] = data['metrics/mAP50(B)'].fillna(data['metrics/mAP50(B)'].interpolate())
    plt.plot(data['metrics/mAP50(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5')
plt.legend()

plt.subplot(2, 2, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/mAP50-95(B)'] = data['metrics/mAP50-95(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/mAP50-95(B)'] = data['metrics/mAP50-95(B)'].fillna(data['metrics/mAP50-95(B)'].interpolate())
    plt.plot(data['metrics/mAP50-95(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5:0.95')
plt.legend()

plt.tight_layout()
plt.savefig('metrice_curve.png')
print(f'metrice_curve.png save in {pwd}/metrice_curve.png')

plt.figure(figsize=(15, 10))

plt.subplot(2, 3, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/box_loss'] = data['train/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/box_loss'] = data['train/box_loss'].fillna(data['train/box_loss'].interpolate())
    plt.plot(data['train/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/box_loss')
plt.legend()

plt.subplot(2, 3, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/dfl_loss'] = data['train/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/dfl_loss'] = data['train/dfl_loss'].fillna(data['train/dfl_loss'].interpolate())
    plt.plot(data['train/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/dfl_loss')
plt.legend()

plt.subplot(2, 3, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/cls_loss'] = data['train/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/cls_loss'] = data['train/cls_loss'].fillna(data['train/cls_loss'].interpolate())
    plt.plot(data['train/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/cls_loss')
plt.legend()

plt.subplot(2, 3, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/box_loss'] = data['val/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/box_loss'] = data['val/box_loss'].fillna(data['val/box_loss'].interpolate())
    plt.plot(data['val/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/box_loss')
plt.legend()

plt.subplot(2, 3, 5)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/dfl_loss'] = data['val/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/dfl_loss'] = data['val/dfl_loss'].fillna(data['val/dfl_loss'].interpolate())
    plt.plot(data['val/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/dfl_loss')
plt.legend()

plt.subplot(2, 3, 6)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/cls_loss'] = data['val/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/cls_loss'] = data['val/cls_loss'].fillna(data['val/cls_loss'].interpolate())
    plt.plot(data['val/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/cls_loss')
plt.legend()

plt.tight_layout()
plt.savefig('loss_curve.png')
print(f'loss_curve.png save in {pwd}/loss_curve.png')

可视化结果展示

相关推荐
小袁进化之路几秒前
黎跃春深度解析:2026 智能体应用开发全流程与工程化实战思路
人工智能·智能体
安如衫1 分钟前
从 OCR 到多模态 VLM Agentic AI:智能文档问答的范式转移全解
人工智能·ocr·agent·cv·rag·vlm
AI街潜水的八角2 分钟前
YOLO26手势识别项目实战1-十种手语实时检测系统数据集说明(含下载链接)
人工智能·深度学习·神经网络·yolo
康康的AI博客2 分钟前
2026 OpenAI技术全景:GPT-5.2领衔的AI革命与DMXAPI无缝替代方案
人工智能·gpt
PPIO派欧云6 分钟前
PPIO 上线 DeepSeek-OCR-2 ,支持一键私有化部署
人工智能·ocr
tamide40096698917 分钟前
云南专业AIGEO搜索优化,解锁本地流量新密码
人工智能·aigc
2501_9476941820 分钟前
易直聘受邀出席重庆人才研究和人力资源服务协会会员代表大会,赋能企业促就业
大数据·人工智能
传说故事25 分钟前
【论文自动阅读】ActiveVLA: 将主动感知注入VLA模型以实现精准三维机器人操控
人工智能·深度学习·机器人·具身智能·vla
十六年开源服务商26 分钟前
AI客服系统WordPress集成指南
人工智能
小袁进化之路27 分钟前
黎跃春讲 AI 智能体运营工程师:从工程架构到可运营系统的完整实战详解
大数据·人工智能·架构