【目标检测】metrice_curve和loss_curve对比图可视化

代码如下:

py 复制代码
import warnings
warnings.filterwarnings('ignore')

import os
import pandas as pd
import numpy as np
import matplotlib.pylab as plt

pwd = os.getcwd()

names = ['model1', 'model2', 'model3','ours']

plt.figure(figsize=(10, 10))

plt.subplot(2, 2, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/precision(B)'] = data['metrics/precision(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/precision(B)'] = data['metrics/precision(B)'].fillna(data['metrics/precision(B)'].interpolate())
    plt.plot(data['metrics/precision(B)'], label=i)
plt.xlabel('epoch')
plt.title('precision')
plt.legend()

plt.subplot(2, 2, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/recall(B)'] = data['metrics/recall(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/recall(B)'] = data['metrics/recall(B)'].fillna(data['metrics/recall(B)'].interpolate())
    plt.plot(data['metrics/recall(B)'], label=i)
plt.xlabel('epoch')
plt.title('recall')
plt.legend()

plt.subplot(2, 2, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/mAP50(B)'] = data['metrics/mAP50(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/mAP50(B)'] = data['metrics/mAP50(B)'].fillna(data['metrics/mAP50(B)'].interpolate())
    plt.plot(data['metrics/mAP50(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5')
plt.legend()

plt.subplot(2, 2, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['metrics/mAP50-95(B)'] = data['metrics/mAP50-95(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['metrics/mAP50-95(B)'] = data['metrics/mAP50-95(B)'].fillna(data['metrics/mAP50-95(B)'].interpolate())
    plt.plot(data['metrics/mAP50-95(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5:0.95')
plt.legend()

plt.tight_layout()
plt.savefig('metrice_curve.png')
print(f'metrice_curve.png save in {pwd}/metrice_curve.png')

plt.figure(figsize=(15, 10))

plt.subplot(2, 3, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/box_loss'] = data['train/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/box_loss'] = data['train/box_loss'].fillna(data['train/box_loss'].interpolate())
    plt.plot(data['train/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/box_loss')
plt.legend()

plt.subplot(2, 3, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/dfl_loss'] = data['train/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/dfl_loss'] = data['train/dfl_loss'].fillna(data['train/dfl_loss'].interpolate())
    plt.plot(data['train/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/dfl_loss')
plt.legend()

plt.subplot(2, 3, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['train/cls_loss'] = data['train/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['train/cls_loss'] = data['train/cls_loss'].fillna(data['train/cls_loss'].interpolate())
    plt.plot(data['train/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/cls_loss')
plt.legend()

plt.subplot(2, 3, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/box_loss'] = data['val/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/box_loss'] = data['val/box_loss'].fillna(data['val/box_loss'].interpolate())
    plt.plot(data['val/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/box_loss')
plt.legend()

plt.subplot(2, 3, 5)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/dfl_loss'] = data['val/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/dfl_loss'] = data['val/dfl_loss'].fillna(data['val/dfl_loss'].interpolate())
    plt.plot(data['val/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/dfl_loss')
plt.legend()

plt.subplot(2, 3, 6)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['val/cls_loss'] = data['val/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['val/cls_loss'] = data['val/cls_loss'].fillna(data['val/cls_loss'].interpolate())
    plt.plot(data['val/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/cls_loss')
plt.legend()

plt.tight_layout()
plt.savefig('loss_curve.png')
print(f'loss_curve.png save in {pwd}/loss_curve.png')

可视化结果展示

相关推荐
山烛2 小时前
OpenCV:图像透视变换
人工智能·opencv·计算机视觉·图像透视变换
艾醒(AiXing-w)2 小时前
探索大语言模型(LLM):Ollama快速安装部署及使用(含Linux环境下离线安装)
linux·人工智能·语言模型
月小水长2 小时前
大模型接入自定义 MCP Server,我开发了个免费使用的基金涨跌归纳和归因分析的 Agent
人工智能·后端
咏方舟【长江支流】2 小时前
AI+华为HarmonyOS开发工具DevEco Studio详细安装指南
人工智能·华为·移动开发·harmonyos·arkts·deveco studio·长江支流
阿里云云原生3 小时前
Qoder 全新「上下文压缩」功能正式上线,省 Credits !
人工智能
我星期八休息3 小时前
深入理解跳表(Skip List):原理、实现与应用
开发语言·数据结构·人工智能·python·算法·list
蒋星熠3 小时前
如何在Anaconda中配置你的CUDA & Pytorch & cuNN环境(2025最新教程)
开发语言·人工智能·pytorch·python·深度学习·机器学习·ai
Hcoco_me3 小时前
什么是机器学习?
人工智能·机器学习
Code_流苏3 小时前
AI热点周报(9.7~9.13):阿里Qwen3-Next震撼发布、Claude 增强记忆与服务抖动、OpenAI 聚焦模型规范化...
人工智能·gpt·ai·openai·claude·qwen3-next·架构创新