大模型微调之LLaMA-Factory实战

目录

  • [1. 环境搭建](#1. 环境搭建)
  • [2. 开始调参](#2. 开始调参)
    • [2.1 模型配置](#2.1 模型配置)
    • [2.2 选择数据集](#2.2 选择数据集)
      • [2.2.1 使用自定义数据集](#2.2.1 使用自定义数据集)
    • [2.3 其他参数](#2.3 其他参数)
  • [3. 开始微调](#3. 开始微调)
  • [4. 模型评测](#4. 模型评测)
  • [5. 模型导出](#5. 模型导出)

1. 环境搭建

环境要求

Python ≥3.9

PyTorch & CUDA

GPU显存>24GB

安装命令

bash 复制代码
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
llamafactory-cli webui

2. 开始调参

浏览器输入http://10.0.0.140:7861/进入调参页

2.1 模型配置

首先要选择要微调的模型,我们这里选择DeepSeek-R1-1.5B-Distill,如果预先没下载好模型,右侧模型下载源选择modelscope

2.2 选择数据集

2.2.1 使用自定义数据集

2.3 其他参数

其他参数根据需要自行调节

3. 开始微调

点击start即开始微调训练,训练完成后,可以在LLaMA-Factory-main/saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-09-10-00-34-43/目录下找到微调后的模型即训练loss曲线图

从loss曲线图可以看出,虽然震荡比较厉害,但是整体趋势是一直在下降的

4. 模型评测

模型训练完成后,可以对模型进行评测

调参页选择Evaluate&Predict,然后点击Start即可。

完成后,会输出如下评测结果

5. 模型导出

在调参页选择Export,然后选在刚微调的模型,并填写导出路径,点击Export即开始导出。

导出完成后,可以在导出目录看到如下:

相关推荐
大傻^2 天前
大模型基于llama.cpp量化详解
llama·大模型量化
大傻^2 天前
大模型微调-基于llama-factory详解
llama·模型微调
空中楼阁,梦幻泡影2 天前
主流4 大模型(GPT、LLaMA、DeepSeek、QWE)的训练与推理算力估算实例详细数据
人工智能·gpt·llama
蓝田生玉1232 天前
LLaMA论文阅读笔记
论文阅读·笔记·llama
木卫二号Coding2 天前
第七十七篇-V100+llama-cpp-python-server+Qwen3-30B+GGUF
开发语言·python·llama
木卫二号Coding2 天前
第七十六篇-V100+llama-cpp-python+Qwen3-30B+GGUF
开发语言·python·llama
姚华军3 天前
在本地(Windows环境)部署LLaMa-Factory,进行模型微调步骤!!!
windows·ai·llama·llama-factory
Honmaple3 天前
openclaw使用llama.cpp 本地大模型部署教程
llama
love530love3 天前
Windows 11 配置 CUDA 版 llama.cpp 并实现系统全局调用(GGUF 模型本地快速聊天)
人工智能·windows·大模型·llama·llama.cpp·gguf·cuda 加速
feasibility.4 天前
多模态模型Qwen3-VL在Llama-Factory中断LoRA微调训练+测试+导出+部署全流程--以具身智能数据集open-eqa为例
人工智能·python·大模型·nlp·llama·多模态·具身智能