大模型微调之LLaMA-Factory实战

目录

  • [1. 环境搭建](#1. 环境搭建)
  • [2. 开始调参](#2. 开始调参)
    • [2.1 模型配置](#2.1 模型配置)
    • [2.2 选择数据集](#2.2 选择数据集)
      • [2.2.1 使用自定义数据集](#2.2.1 使用自定义数据集)
    • [2.3 其他参数](#2.3 其他参数)
  • [3. 开始微调](#3. 开始微调)
  • [4. 模型评测](#4. 模型评测)
  • [5. 模型导出](#5. 模型导出)

1. 环境搭建

环境要求

Python ≥3.9

PyTorch & CUDA

GPU显存>24GB

安装命令

bash 复制代码
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
llamafactory-cli webui

2. 开始调参

浏览器输入http://10.0.0.140:7861/进入调参页

2.1 模型配置

首先要选择要微调的模型,我们这里选择DeepSeek-R1-1.5B-Distill,如果预先没下载好模型,右侧模型下载源选择modelscope

2.2 选择数据集

2.2.1 使用自定义数据集

2.3 其他参数

其他参数根据需要自行调节

3. 开始微调

点击start即开始微调训练,训练完成后,可以在LLaMA-Factory-main/saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-09-10-00-34-43/目录下找到微调后的模型即训练loss曲线图

从loss曲线图可以看出,虽然震荡比较厉害,但是整体趋势是一直在下降的

4. 模型评测

模型训练完成后,可以对模型进行评测

调参页选择Evaluate&Predict,然后点击Start即可。

完成后,会输出如下评测结果

5. 模型导出

在调参页选择Export,然后选在刚微调的模型,并填写导出路径,点击Export即开始导出。

导出完成后,可以在导出目录看到如下:

相关推荐
2202_756749692 小时前
LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)
人工智能·深度学习·llama
JoannaJuanCV2 小时前
大模型训练框架:LLaMA-Factory框架
llama·大模型训练·llama factory
骑士9991113 天前
llama_factory 安装以及大模型微调
llama
周小码3 天前
llama-stack实战:Python构建Llama应用的可组合开发框架(8k星)
开发语言·python·llama
blackoon886 天前
DeepSeek R1大模型微调实战-llama-factory的模型下载与训练
llama
johnny2336 天前
大模型微调理论、实战:LLaMA-Factory、Unsloth
llama
闲看云起6 天前
从 GPT 到 LLaMA:解密 LLM 的核心架构——Decoder-Only 模型
gpt·架构·llama
小草cys8 天前
在树莓派集群上部署 Distributed Llama (Qwen 3 14B) 详细指南
python·llama·树莓派·qwen
咕咚-萌西8 天前
联邦学习论文分享:Towards Building the Federated GPT:Federated Instruction Tuning
llama·联邦学习·指令微调