大模型微调之LLaMA-Factory实战

目录

  • [1. 环境搭建](#1. 环境搭建)
  • [2. 开始调参](#2. 开始调参)
    • [2.1 模型配置](#2.1 模型配置)
    • [2.2 选择数据集](#2.2 选择数据集)
      • [2.2.1 使用自定义数据集](#2.2.1 使用自定义数据集)
    • [2.3 其他参数](#2.3 其他参数)
  • [3. 开始微调](#3. 开始微调)
  • [4. 模型评测](#4. 模型评测)
  • [5. 模型导出](#5. 模型导出)

1. 环境搭建

环境要求

Python ≥3.9

PyTorch & CUDA

GPU显存>24GB

安装命令

bash 复制代码
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
llamafactory-cli webui

2. 开始调参

浏览器输入http://10.0.0.140:7861/进入调参页

2.1 模型配置

首先要选择要微调的模型,我们这里选择DeepSeek-R1-1.5B-Distill,如果预先没下载好模型,右侧模型下载源选择modelscope

2.2 选择数据集

2.2.1 使用自定义数据集

2.3 其他参数

其他参数根据需要自行调节

3. 开始微调

点击start即开始微调训练,训练完成后,可以在LLaMA-Factory-main/saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-09-10-00-34-43/目录下找到微调后的模型即训练loss曲线图

从loss曲线图可以看出,虽然震荡比较厉害,但是整体趋势是一直在下降的

4. 模型评测

模型训练完成后,可以对模型进行评测

调参页选择Evaluate&Predict,然后点击Start即可。

完成后,会输出如下评测结果

5. 模型导出

在调参页选择Export,然后选在刚微调的模型,并填写导出路径,点击Export即开始导出。

导出完成后,可以在导出目录看到如下:

相关推荐
大模型实验室Lab4AI5 小时前
Qwen-Video-8B与LLaMA-Factory联动实现垂类视频理解
人工智能·音视频·llama
百***78755 小时前
LLaMA 4 API国内稳定接入指南:中转服务全链路实操与优化方案
开发语言·php·llama
百***24375 小时前
LLaMA 4 vs GPT-5.2 全面对比:技术特性、接入成本与国内适配选型指南
gpt·llama
Coder个人博客1 天前
MiniCPM-o.cpp 项目概览
llama
大模型实验室Lab4AI2 天前
LLaMA-Factory 课程答疑系列一:10个关键问题速查,官方认证解法让训练推理不踩雷
人工智能·llama
小苑同学2 天前
PaperReding:《LLaMA: Open and Efficient Foundation Language Models》
人工智能·语言模型·llama
deephub2 天前
llama.cpp Server 引入路由模式:多模型热切换与进程隔离机制详解
人工智能·python·深度学习·llama
Robot侠4 天前
极简LLM入门指南1
llm·llama
Robot侠4 天前
Jetson Orin NX 上部署 Ollama + Llama 3.2
llama
快撑死的鱼5 天前
Llama-factory 详细学习笔记:第六章:DPO (直接偏好优化) 实战 (难点)
笔记·学习·llama