支持向量机 SVM 预测人脸数据集时数据是否标准化的对比差异

结果

可以看出数据标准后的预测效果明显好于未进行数据标准化

数据标准化前的模型预测结果

绿色为预测正确,红色为预测错误

复制代码
                   precision    recall  f1-score   support

     Ariel Sharon       0.17      0.69      0.28        13
     Colin Powell       0.62      0.27      0.37        60
  Donald Rumsfeld       0.48      0.52      0.50        27
    George W Bush       0.81      0.41      0.55       146
Gerhard Schroeder       0.32      0.48      0.39        25
      Hugo Chavez       0.20      0.73      0.31        15
       Tony Blair       0.42      0.56      0.48        36

         accuracy                           0.44       322
        macro avg       0.43      0.52      0.41       322
     weighted avg       0.61      0.44      0.47       322

数据标准化后的模型预测结果

绿色为预测正确,红色为预测错误

复制代码
--- 模型评估报告 ---
                   precision    recall  f1-score   support

     Ariel Sharon       0.67      0.46      0.55        13
     Colin Powell       0.78      0.82      0.80        60
  Donald Rumsfeld       0.74      0.52      0.61        27
    George W Bush       0.76      0.92      0.83       146
Gerhard Schroeder       0.71      0.60      0.65        25
      Hugo Chavez       1.00      0.27      0.42        15
       Tony Blair       0.76      0.61      0.68        36

         accuracy                           0.76       322
        macro avg       0.77      0.60      0.65       322
     weighted avg       0.76      0.76      0.74       322

代码

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_lfw_people
from sklearn.svm import SVC
from sklearn.metrics import classification_report, RocCurveDisplay, auc
from sklearn.preprocessing import StandardScaler, LabelBinarizer
import time

# --- 解决中文显示问题 ---
plt.rcParams['font.sans-serif'] = ['SimHei', 'WenQuanYi Zen Hei', 'STHeiti', 'Arial Unicode MS']
plt.rcParams['axes.unicode_minus'] = False

# --- 加载数据集 ---
print("正在加载 Labeled Faces in the Wild (LFW) 数据集...")

lfw_data = fetch_lfw_people(
    min_faces_per_person=70, # 过滤掉样本过少的人,确保每个类别都有足够的样本进行训练
    resize=0.4, # 图像缩放比例,0.4表示将原图缩小到40%
    color=False  # 直接加载灰度图
)
print("数据集加载成功!")

# --- 数据集基本信息 ---
print("\n--- 数据集简要概览 ---")
n_samples, h, w = lfw_data.images.shape
X = lfw_data.data
y = lfw_data.target
n_features = X.shape[1]
target_names = lfw_data.target_names
n_classes = target_names.shape[0]

print(f"总样本数: {n_samples}")
print(f"特征数: {n_features}")
print(f"类别数: {n_classes}")
print(f"图像尺寸: {h}x{w}")
print("类别名称: ", target_names.tolist())

# --- 数据可视化:展示一些人脸图片 ---
print("\n--- 正在展示部分人脸图片... ---")
def plot_gallery(images, titles, h, w, n_row=3, n_col=5):
    """绘制一个图片画廊"""
    plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
    plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
    for i in range(n_row * n_col):
        plt.subplot(n_row, n_col, i + 1)
        plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
        plt.title(titles[i], size=12)
        plt.xticks(())
        plt.yticks(())

# 绘制画廊
title_names = [target_names[i] for i in y]
plot_gallery(lfw_data.images, title_names, h, w)
plt.show()

# --- 模型训练与评估 ---
print("\n--- 正在划分数据集并进行标准化处理... ---")
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.25, random_state=42
)

# 使用 StandardScaler 进行标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 未进行标准化
# X_train_scaled = X_train
# X_test_scaled = X_test

print("\n--- 正在训练SVC模型... ---")
# 训练 SVC 模型
start_time = time.time()
classifier = SVC(kernel='rbf', class_weight='balanced', gamma=0.001)
classifier.fit(X_train_scaled, y_train)
end_time = time.time()
print("模型训练完成!")
print(f"训练耗时: {end_time - start_time:.2f} 秒")

# 评估模型
y_pred = classifier.predict(X_test_scaled)
print("\n--- 模型评估报告 ---")
print(classification_report(y_test, y_pred, target_names=target_names))

# 可视化预测结果
print("\n--- 正在展示部分预测结果... ---")
def plot_pred_gallery(images, y_true, y_pred, titles, h, w, n_row=3, n_col=5):
    """绘制包含预测结果的图片画廊"""
    plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
    plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
    for i in range(n_row * n_col):
        plt.subplot(n_row, n_col, i + 1)
        plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
        color = 'green' if y_pred[i] == y_true[i] else 'red'
        plt.title(titles[i], size=12, color=color)
        plt.xticks(())
        plt.yticks(())

# 生成预测结果的标题
prediction_titles = [f"Real: {target_names[y_test[i]]}\nPred: {target_names[y_pred[i]]}"
                     for i in range(y_pred.shape[0])]

# 绘制画廊,显示预测结果(只取部分样本)
plot_pred_gallery(X_test, y_test, y_pred, prediction_titles, h, w)
plt.show()

# --- ROC曲线与AUC分数可视化 ---
print("\n--- 正在绘制ROC曲线... ---")
# SVC的decision_function用于获取置信度分数
y_score = classifier.decision_function(X_test_scaled)

# 将多类别标签转换为二元形式(一对多)
lb = LabelBinarizer()
y_test_bin = lb.fit_transform(y_test)

plt.figure(figsize=(10, 8))
# 绘制每个类别的ROC曲线
for i in range(n_classes):
    RocCurveDisplay.from_predictions(
        y_test_bin[:, i],
        y_score[:, i],
        name=f"ROC curve for {target_names[i]}",
        ax=plt.gca()
    )

# 绘制对角线(随机猜测)
plt.plot([0, 1], [0, 1], 'k--', label='随机猜测')
plt.title('多类别ROC曲线 (一对多)')
plt.xlabel('假正例率 (False Positive Rate)')
plt.ylabel('真正例率 (True Positive Rate)')
plt.legend()
plt.grid(True)
plt.show()

# 计算宏平均AUC(Macro-average AUC)
macro_roc_auc_ovo = auc(
    np.unique(y_test_bin, axis=0)[0],
    np.mean(y_score, axis=0)
)
print(f"\n宏平均AUC(一对一): {macro_roc_auc_ovo:.2f}")
相关推荐
蒋星熠5 小时前
支持向量机深度解析:从数学原理到工程实践的完整指南
人工智能·python·深度学习·神经网络·算法·机器学习·支持向量机
qianshanxue115 小时前
四网络层IP-子网掩码ARP CIDR RIP OSPF BGP 路由算法-思考题
网络·tcp/ip·计算机网络·算法·同等学力
LLLfz5 小时前
函数查找-更快的查找算法
算法
Monkey的自我迭代5 小时前
图像拼接(反向拼接巨难,求指教!)
图像处理·人工智能·python·opencv·算法·计算机视觉
B站_计算机毕业设计之家6 小时前
✅ Python+Django租房推荐系统 双协同过滤+Echarts可视化 租房系统 推荐算法 全栈开发(建议收藏)✅
python·机器学习·数据分析·django·echarts·推荐算法·租房
茜茜西西CeCe6 小时前
数字图像处理-函数矩阵
线性代数·算法·matlab·矩阵·函数·数字图像处理
理论最高的吻6 小时前
108. 将有序数组转换为二叉搜索树【 力扣(LeetCode) 】
c++·算法·leetcode·职场和发展·二分查找·平衡二叉树
货拉拉技术6 小时前
打破RAG局限!意图+语义双检索框架来了
算法·架构
弈宸3 天前
Transformer与ViT
算法·架构