PyTorch 神经网络工具箱

一、核心组件

神经网络由四大核心组件构成:

层:基础结构单元,实现张量数据变换。

模型:多层组合形成的网络整体,完成输入到输出的映射。

损失函数:计算预测值与真实值差异,为参数优化提供方向。

优化器:通过算法(如梯度下降)最小化损失,更新模型参数。

二、核心构建工具

|---------------|----------------------|-------------------|
| 工具 | 特点 | 适用场景 |
| nn.Module | 可实例化对象,自动管理参数,支持状态切换 | 卷积层、全连接层等需参数学习的组件 |
| nn.functional | 纯函数,需手动传参,无状态切换 | 激活函数、池化层等无参数组件 |

三、模型构建方法

  1. 继承 nn.Module 基类:自定义层定义与前向传播,灵活性最高。
  2. nn.Sequential 顺序构建:支持可变参数、add_module、OrderedDict 三种方式,适用于线性串联的简单模型。
  3. 基类 + 模型容器:结合灵活性与便捷性,容器包括 Sequential(顺序封装)、ModuleList(列表存储)、ModuleDict(字典存储)。

四、自定义模块

以残差块为例:

1.基础残差块:输入输出直接相加,解决梯度消失问题。

2.下采样残差块:加 1×1 卷积调整形状,适配特征图尺寸 / 通道变化。

3.组合构建 ResNet18 等复杂网络。

相关推荐
史锦彪2 小时前
yTorch 神经网络工具箱:核心原理与实践指南
人工智能·深度学习·神经网络
yzx9910132 小时前
对比django,flask,opencv三大
人工智能·后端·python·django·flask
shuououo2 小时前
PyTorch 神经网络构建与训练笔记
pytorch·笔记·神经网络
海底的星星fly2 小时前
【Prompt学习技能树地图】DeepSeek专家模式下的Prompt工程进阶学习实践
人工智能·语言模型·prompt
Code_LT2 小时前
【算法】多榜单排序->综合排序问题
人工智能·算法
Thomas21432 小时前
MinMaxScaler Scikit-learn sparkml 稀疏向量
人工智能·机器学习·scikit-learn
_nirvana_w_3 小时前
PyQt6+OpenCV 实战:打造功能完备的数字图像处理 GUI 系统
人工智能·python·qt·opencv·计算机视觉
hunteritself3 小时前
DeepSeek 登《自然》封面,OpenAI 推出 GPT-5-Codex,Notion Agent 首亮相!| AI Weekly 9.15-9.21
前端·人工智能·chrome·gpt·深度学习·notion