PyTorch 神经网络工具箱

一、核心组件

神经网络由四大核心组件构成:

层:基础结构单元,实现张量数据变换。

模型:多层组合形成的网络整体,完成输入到输出的映射。

损失函数:计算预测值与真实值差异,为参数优化提供方向。

优化器:通过算法(如梯度下降)最小化损失,更新模型参数。

二、核心构建工具

|---------------|----------------------|-------------------|
| 工具 | 特点 | 适用场景 |
| nn.Module | 可实例化对象,自动管理参数,支持状态切换 | 卷积层、全连接层等需参数学习的组件 |
| nn.functional | 纯函数,需手动传参,无状态切换 | 激活函数、池化层等无参数组件 |

三、模型构建方法

  1. 继承 nn.Module 基类:自定义层定义与前向传播,灵活性最高。
  2. nn.Sequential 顺序构建:支持可变参数、add_module、OrderedDict 三种方式,适用于线性串联的简单模型。
  3. 基类 + 模型容器:结合灵活性与便捷性,容器包括 Sequential(顺序封装)、ModuleList(列表存储)、ModuleDict(字典存储)。

四、自定义模块

以残差块为例:

1.基础残差块:输入输出直接相加,解决梯度消失问题。

2.下采样残差块:加 1×1 卷积调整形状,适配特征图尺寸 / 通道变化。

3.组合构建 ResNet18 等复杂网络。

相关推荐
饭饭大王6662 分钟前
深度学习在计算机视觉中的最新进展
人工智能·深度学习·计算机视觉
John_ToDebug2 分钟前
浏览器内核的“智变”:从渲染引擎到AI原生操作系统的征途
人工智能·chrome
用户4802151702474 分钟前
Transformer 的技术层面
人工智能
std78795 分钟前
Intel Arrow Lake Refresh迎来DDR5‑7200 CUDIMM支持,提升内存兼容性
人工智能
小喵要摸鱼6 分钟前
【卷积神经网络】卷积层、池化层、全连接层
人工智能·深度学习·cnn
vvoennvv1 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
YJlio1 小时前
[编程达人挑战赛] 用 PowerShell 写了一个“电脑一键初始化脚本”:从混乱到可复制的开发环境
数据库·人工智能·电脑
RoboWizard2 小时前
PCIe 5.0 SSD有无独立缓存对性能影响大吗?Kingston FURY Renegade G5!
人工智能·缓存·电脑·金士顿
霍格沃兹测试开发学社-小明2 小时前
测试左移2.0:在开发周期前端筑起质量防线
前端·javascript·网络·人工智能·测试工具·easyui
懒麻蛇2 小时前
从矩阵相关到矩阵回归:曼特尔检验与 MRQAP
人工智能·线性代数·矩阵·数据挖掘·回归