机器学习-多因子线性回归

以Income、House age、Numbers Of Rooms、Population、Area为输入变量,建立多因子模型,预测合理房价price,评估模型表现。

代码如下:

python 复制代码
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import  mean_squared_error,r2_score
from matplotlib import pyplot as plt

data=pd.read_csv('usa_housing_price.csv')
fig = plt.figure(figsize=[10,10])

fig1=plt.subplot(2,3,1)  # 表示2行3列,第1个图
plt.scatter(data.loc[:,'Avg.Area Income'],data.loc[:,'Price'])
plt.title('Price vs Area Income')

fig2=plt.subplot(2,3,2)  # 表示2行3列,第2个图
plt.scatter(data.loc[:,'Avg.Area House Age'],data.loc[:,'Price'])
plt.title('Price vs House Age')

fig3=plt.subplot(2,3,3)  # 表示2行3列,第3个图
plt.scatter(data.loc[:,'Avg.Area Number of Rooms'],data.loc[:,'Price'])
plt.title('Price vs Avg.Area Number of Rooms')

# fig4=plt.subplot(2,3,4)  # 表示2行3列,第4个图
# plt.scatter(data.loc[:,'Area Population'],data.loc[:,'Price'])
# plt.title('Price vs Area Population')

fig5=plt.subplot(2,3,5)  # 表示2行3列,第5个图
plt.scatter(data.loc[:,'size'],data.loc[:,'Price'])
plt.title('Price vs size')
plt.show()

Y=data.loc[:,'Price']
# define X_multi
X_multi =data.drop(['Price'],axis=1) # 除了Price的变量都放入X_multi,不需要reshape
# set up 2nd linear model
LR_multi=LinearRegression()

LR_multi.fit(X_multi,Y)
# make prediction
y_predict_multi=LR_multi.predict(X_multi)
print(y_predict_multi)

# 模型评估
mean_squared_error_multi=mean_squared_error(Y,y_predict_multi)
r2_score_multi =r2_score(Y,y_predict_multi)
print(mean_squared_error_multi,r2_score_multi)

fig6=plt.figure(figsize=[8,5])
plt.scatter(Y,y_predict_multi) # 拟合真实Y和预测Y关系图像
plt.show()

# 使用模型进行预测Price
x_test=[65000,5,5,30000,200]
x_test=np.array(x_test).reshape(1,-1)
y_test_predict=LR_multi.predict(x_test)
print("预测房价",y_test_predict)

数据如图:


输出结果:

单因子与价格(Price)关系图:

真实Y和预测Y关系图:

相关推荐
AC赳赳老秦2 分钟前
代码生成超越 GPT-4:DeepSeek-V4 编程任务实战与 2026 开发者效率提升指南
数据库·数据仓库·人工智能·科技·rabbitmq·memcache·deepseek
液态不合群4 分钟前
推荐算法中的位置消偏,如何解决?
人工智能·机器学习·推荐算法
饭饭大王6668 分钟前
当 AI 系统开始“自省”——在 `ops-transformer` 中嵌入元认知能力
人工智能·深度学习·transformer
ujainu8 分钟前
CANN仓库中的AIGC可移植性工程:昇腾AI软件栈如何实现“一次开发,多端部署”的跨生态兼容
人工智能·aigc
初恋叫萱萱10 分钟前
CANN 生态实战指南:从零构建一个高性能边缘 AI 应用的完整流程
人工智能
Lethehong13 分钟前
CANN ops-nn仓库深度解读:AIGC时代的神经网络算子优化实践
人工智能·神经网络·aigc
开开心心就好14 分钟前
AI人声伴奏分离工具,离线提取伴奏K歌用
java·linux·开发语言·网络·人工智能·电脑·blender
TechWJ15 分钟前
CANN ops-nn神经网络算子库技术剖析:NPU加速的基石
人工智能·深度学习·神经网络·cann·ops-nn
凌杰15 分钟前
AI 学习笔记:LLM 的部署与测试
人工智能
心易行者18 分钟前
在 Claude 4.6 发布的当下,一个不懂编程的人聊聊 Claude Code:当 AI 终于学会自己动手干活
人工智能