机器学习-多因子线性回归

以Income、House age、Numbers Of Rooms、Population、Area为输入变量,建立多因子模型,预测合理房价price,评估模型表现。

代码如下:

python 复制代码
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import  mean_squared_error,r2_score
from matplotlib import pyplot as plt

data=pd.read_csv('usa_housing_price.csv')
fig = plt.figure(figsize=[10,10])

fig1=plt.subplot(2,3,1)  # 表示2行3列,第1个图
plt.scatter(data.loc[:,'Avg.Area Income'],data.loc[:,'Price'])
plt.title('Price vs Area Income')

fig2=plt.subplot(2,3,2)  # 表示2行3列,第2个图
plt.scatter(data.loc[:,'Avg.Area House Age'],data.loc[:,'Price'])
plt.title('Price vs House Age')

fig3=plt.subplot(2,3,3)  # 表示2行3列,第3个图
plt.scatter(data.loc[:,'Avg.Area Number of Rooms'],data.loc[:,'Price'])
plt.title('Price vs Avg.Area Number of Rooms')

# fig4=plt.subplot(2,3,4)  # 表示2行3列,第4个图
# plt.scatter(data.loc[:,'Area Population'],data.loc[:,'Price'])
# plt.title('Price vs Area Population')

fig5=plt.subplot(2,3,5)  # 表示2行3列,第5个图
plt.scatter(data.loc[:,'size'],data.loc[:,'Price'])
plt.title('Price vs size')
plt.show()

Y=data.loc[:,'Price']
# define X_multi
X_multi =data.drop(['Price'],axis=1) # 除了Price的变量都放入X_multi,不需要reshape
# set up 2nd linear model
LR_multi=LinearRegression()

LR_multi.fit(X_multi,Y)
# make prediction
y_predict_multi=LR_multi.predict(X_multi)
print(y_predict_multi)

# 模型评估
mean_squared_error_multi=mean_squared_error(Y,y_predict_multi)
r2_score_multi =r2_score(Y,y_predict_multi)
print(mean_squared_error_multi,r2_score_multi)

fig6=plt.figure(figsize=[8,5])
plt.scatter(Y,y_predict_multi) # 拟合真实Y和预测Y关系图像
plt.show()

# 使用模型进行预测Price
x_test=[65000,5,5,30000,200]
x_test=np.array(x_test).reshape(1,-1)
y_test_predict=LR_multi.predict(x_test)
print("预测房价",y_test_predict)

数据如图:


输出结果:

单因子与价格(Price)关系图:

真实Y和预测Y关系图:

相关推荐
Codebee1 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º2 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys2 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56782 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子2 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能3 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144873 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile3 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5773 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥3 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造