Day26_【深度学习(6)—神经网络NN(2)损失函数】

在深度学习中,损失函数通过比较预测值与真实值之间的差异,来衡量模型参数质量

数据差异越小,越拟合,损失值越小

损失函数主要根据任务类型来选择,最常见的是分类回归两大类。

一、分类任务损失函数

交叉熵损失

这是分类任务中最主流、最常用的损失函数。

1.多分类交叉熵

  • 适用:两个以上类别的任务(如:猫、狗、鸟)。
  • 公式:
  • **PyTorch:**nn.CrossEntropyLoss()

2.二分类交叉熵

  • 适用:只有两个类别的任务(如:是/否,猫/狗)。
  • 公式:

​​​​​​​ ​​​​​​​

  • **PyTorch:**nn.BCELoss()

二、回归任务损失函数

用于预测连续的数值。

1. 平均绝对误差 (Mean Absolute Error, MAE) / L1 Loss
  • 原理:计算预测值与真实值之差的绝对值的平均值。
  • 公式
  • 优点:对异常值不敏感,更稳健。
  • 缺点 :在 y = ŷ 处不可导(但通常可以处理)。
  • PyTorch : nn.L1Loss()
2. 均方误差 (Mean Squared Error, MSE)/ L2 Loss

这是回归任务中最基础、最常用的损失函数。

  • 原理:计算预测值与真实值之差的平方的平均值。
  • 公式
  • 优点:数学性质好,可导,易于优化。
  • 缺点:对异常值(离群点)非常敏感,因为误差被平方了。
  • PyTorch : nn.MSELoss()
3. SmoothL1 Loss (平滑的L1损失)

​​​​​​​ ​​​​​​​

  • 原理:MSE 和 MAE 的结合体。当误差较小时,行为像MSE(二次);当误差较大时,行为像MAE(线性)。
  • 公式
  • 优点:结合了MSE的平滑性和MAE对异常值的鲁棒性。
  • PyTorch: nn.SmoothL1Loss()

三、小结

任务类型 推荐损失函数 PyTorch 实现 TensorFlow 实现(扩展)
二分类 二元交叉熵 nn.BCELoss() BinaryCrossentropy
多分类 交叉熵 nn.CrossEntropyLoss() SparseCategoricalCrossentropy
回归 MSE / MAE / SmoothL1 nn.MSELoss() / nn.L1Loss() / nn.SmoothL1Loss() MeanSquaredError / MeanAbsoluteError / Huber
相关推荐
操练起来5 分钟前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型22 分钟前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网26 分钟前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp27 分钟前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
q***484135 分钟前
Vanna AI:告别代码,用自然语言轻松查询数据库,领先的RAG2SQL技术让结果更智能、更精准!
人工智能·microsoft
LCG元38 分钟前
告别空谈!手把手教你用LangChain构建"能干活"的垂直领域AI Agent
人工智能
想你依然心痛2 小时前
视界无界:基于Rokid眼镜的AI商务同传系统开发与实践
人工智能·智能硬件·rokid·ai眼镜·ar技术
Learn Beyond Limits2 小时前
Data Preprocessing|数据预处理
大数据·人工智能·python·ai·数据挖掘·数据处理
shmexon2 小时前
上海兆越亮相无锡新能源盛会,以硬核通信科技赋能“能碳未来”
网络·人工智能
ziwu2 小时前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别