机器学习-单因子线性回归

回归分析:根据数据,确定两种或两种以上变量间相互依赖的定量关系。

python实现:

python 复制代码
import pandas as pd
data = pd.read_csv('generated_data.csv') # 读数据
data.head()
x = data.loc[:,'x'] # 将文件中的x读入数组
y = data.loc[:,'y']

from matplotlib import pyplot as plt
plt.figure(figsize=(5,5)) # 画图
plt.scatter(x,y)
plt.show()

# set up linear regression model 建立模型
from sklearn.linear_model import LinearRegression
lr_model = LinearRegression()
import numpy as np
x=np.array(x) # 转维
x=x.reshape(-1,1)
y=np.array(y)
y=y.reshape(-1,1)
lr_model.fit(x,y)  # 创建模型

# 用模型测试
y_predict=lr_model.predict(x)  # 用x跑y
print(y_predict)
y_3=lr_model.predict([[3.5]]) # 用3.5跑对应y
print('y_3=',y_3)

# 模型评估
# 打印线性回归模型y=ax+b的a,b
a = lr_model.coef_
b = lr_model.intercept_
print('a=',a)
print('b=',b)

from sklearn.metrics import mean_squared_error,r2_score
MSE = mean_squared_error(y,y_predict) # MSE越解决0,越小越好
R2 = r2_score(y,y_predict)  # 越接近1,说明拟合得越好
print('MSE=',MSE)
print('R2=',R2)
plt.figure()
plt.plot(y,y_predict) # 拟合y和预测y
plt.show()

generated_data.csv文件内容展示:


输出结果:

数据x和y拟合图像:

y与y_predict拟合图像:

相关推荐
Codebee15 分钟前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º1 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys1 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56781 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子1 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144872 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile2 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5772 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥2 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造