机器学习-单因子线性回归

回归分析:根据数据,确定两种或两种以上变量间相互依赖的定量关系。

python实现:

python 复制代码
import pandas as pd
data = pd.read_csv('generated_data.csv') # 读数据
data.head()
x = data.loc[:,'x'] # 将文件中的x读入数组
y = data.loc[:,'y']

from matplotlib import pyplot as plt
plt.figure(figsize=(5,5)) # 画图
plt.scatter(x,y)
plt.show()

# set up linear regression model 建立模型
from sklearn.linear_model import LinearRegression
lr_model = LinearRegression()
import numpy as np
x=np.array(x) # 转维
x=x.reshape(-1,1)
y=np.array(y)
y=y.reshape(-1,1)
lr_model.fit(x,y)  # 创建模型

# 用模型测试
y_predict=lr_model.predict(x)  # 用x跑y
print(y_predict)
y_3=lr_model.predict([[3.5]]) # 用3.5跑对应y
print('y_3=',y_3)

# 模型评估
# 打印线性回归模型y=ax+b的a,b
a = lr_model.coef_
b = lr_model.intercept_
print('a=',a)
print('b=',b)

from sklearn.metrics import mean_squared_error,r2_score
MSE = mean_squared_error(y,y_predict) # MSE越解决0,越小越好
R2 = r2_score(y,y_predict)  # 越接近1,说明拟合得越好
print('MSE=',MSE)
print('R2=',R2)
plt.figure()
plt.plot(y,y_predict) # 拟合y和预测y
plt.show()

generated_data.csv文件内容展示:


输出结果:

数据x和y拟合图像:

y与y_predict拟合图像:

相关推荐
szxinmai主板定制专家21 小时前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
ygyqinghuan1 天前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交1 天前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
newxtc1 天前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen1 天前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室1 天前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖1 天前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树1 天前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
丁浩6661 天前
Python机器学习---2.算法:逻辑回归
python·算法·机器学习
B站_计算机毕业设计之家1 天前
计算机毕业设计:Python农业数据可视化分析系统 气象数据 农业生产 粮食数据 播种数据 爬虫 Django框架 天气数据 降水量(源码+文档)✅
大数据·爬虫·python·机器学习·信息可视化·课程设计·农业