《第四届数字信任大会》精彩观点:腾讯经验-人工智能安全风险之应对与实践|从十大风险到企业级防护架构

背景

观点内容摘取自《第四届数字信任大会暨ISACA中国2025年度大会》嘉宾的演讲与分享,内容代表了演讲嘉宾的经验分享/意见观点。

详细版本PPT更新在ISACA中国区官网。

1. AI应用中的十大常见安全风险

  1. 样本投毒(数据污染)

  2. Prompt注入攻击(恶意利用)

  3. 代码辅助工具数据泄露

  4. 第三方代码依赖污染

  5. 自动化Agent权限滥用

  6. 自建模型平台暴露面过大

  7. 模型数据和隐私泄露

  8. 模型推理劫持(对抗样本)

  9. 伦理与偏见放大

  10. 开源模型滥用(深度伪造/辅助犯罪)

这些风险贯穿从数据采集、模型训练到推理和部署的全生命周期,尤其在多智能体系统和开源生态中表现突出。


2. 三个典型安全漏洞案例

案例1:Anthropic SQLite注入漏洞

  • 问题:SQL注入 → 存储式提示注入 → AI代理劫持

  • 关键点:攻击从数据面升级到控制面,触发AI决策逻辑失控。

案例2:MCP Inspector RCE漏洞

  • CVE-2025-49596,CVSS评分9.4

  • 开发者本地工具成为攻击入口,显示本地开发环境同样需严格防护。

案例3:mcp-remote命令注入漏洞

  • CVE-2025-6514,CVSS评分9.6

  • OAuth授权流程被劫持,导致跨平台任意命令执行。


3. 新型威胁:大模型越狱与MCP生态风险

  • 大模型越狱攻击:利用提示词和上下文污染绕过安全策略。

  • MCP协议生态问题:身份认证缺失、权限控制不足、审计追溯缺乏。

  • 多智能体复杂性:权限传递不一致、身份仿冒、跨智能体越权访问。


4. 企业级防护实践

4.1 大模型全生命周期安全

  • 数据安全:分类分级、加密、脱敏、数据溯源、机密计算。

  • 模型安全:漏洞扫描、推理劫持检测、持续监控。

  • 访问控制:统一身份认证、权限分级、跨平台授权。

4.2 防护架构与工具

  • LLM-WAF(大模型防火墙):实时拦截算力滥用、提示词攻击与数据泄露。

  • AI-SPM(攻击面与漏洞管理):风险态势感知与漏洞修复。

  • 天御大模型安全网关:统一身份和权限管控,连接智能体、模型与服务,实现决策链安全。


5. 风险评估与控制框架

  • 130+ 控制措施:覆盖数据、模型、MCP服务、Agent系统七大层次。

  • 测试与监控:从提示词攻击到工作流检测,形成多层次防线。

  • 统一安全水位:消除生态碎片化带来的薄弱点。


相关推荐
国科安芯4 小时前
抗辐照MCU芯片在低轨商业卫星原子钟中的适配与优化
单片机·嵌入式硬件·fpga开发·架构·risc-v
Msshu1234 小时前
PD快充诱骗协议芯片XSP25支持PD+QC+FCP+SCP+AFC协议支持通过串口读取充电器功率信息
人工智能
一RTOS一6 小时前
东土科技连投三家核心企业 发力具身机器人领域
人工智能·科技·机器人·具身智能·鸿道实时操作系统·国产嵌入式操作系统选型
koping_wu7 小时前
【RabbitMQ】架构原理、消息丢失、重复消费、顺序消费、事务消息
分布式·架构·rabbitmq
ACP广源盛139246256737 小时前
(ACP广源盛)GSV1175---- MIPI/LVDS 转 Type-C/DisplayPort 1.2 转换器产品说明及功能分享
人工智能·音视频
胡耀超7 小时前
隐私计算技术全景:从联邦学习到可信执行环境的实战指南—数据安全——隐私计算 联邦学习 多方安全计算 可信执行环境 差分隐私
人工智能·安全·数据安全·tee·联邦学习·差分隐私·隐私计算
停停的茶9 小时前
深度学习(目标检测)
人工智能·深度学习·目标检测
Y200309169 小时前
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习
人工智能·cnn·集成学习
老兵发新帖9 小时前
主流神经网络快速应用指南
人工智能·深度学习·神经网络
旺仔Sec10 小时前
新疆维吾尔自治区第一届“丝路杯”网络安全大赛暨2026年新疆职业院校技能大赛网络安全赛项竞赛样题
安全·web安全