《第四届数字信任大会》精彩观点:腾讯经验-人工智能安全风险之应对与实践|从十大风险到企业级防护架构

背景

观点内容摘取自《第四届数字信任大会暨ISACA中国2025年度大会》嘉宾的演讲与分享,内容代表了演讲嘉宾的经验分享/意见观点。

详细版本PPT更新在ISACA中国区官网。

1. AI应用中的十大常见安全风险

  1. 样本投毒(数据污染)

  2. Prompt注入攻击(恶意利用)

  3. 代码辅助工具数据泄露

  4. 第三方代码依赖污染

  5. 自动化Agent权限滥用

  6. 自建模型平台暴露面过大

  7. 模型数据和隐私泄露

  8. 模型推理劫持(对抗样本)

  9. 伦理与偏见放大

  10. 开源模型滥用(深度伪造/辅助犯罪)

这些风险贯穿从数据采集、模型训练到推理和部署的全生命周期,尤其在多智能体系统和开源生态中表现突出。


2. 三个典型安全漏洞案例

案例1:Anthropic SQLite注入漏洞

  • 问题:SQL注入 → 存储式提示注入 → AI代理劫持

  • 关键点:攻击从数据面升级到控制面,触发AI决策逻辑失控。

案例2:MCP Inspector RCE漏洞

  • CVE-2025-49596,CVSS评分9.4

  • 开发者本地工具成为攻击入口,显示本地开发环境同样需严格防护。

案例3:mcp-remote命令注入漏洞

  • CVE-2025-6514,CVSS评分9.6

  • OAuth授权流程被劫持,导致跨平台任意命令执行。


3. 新型威胁:大模型越狱与MCP生态风险

  • 大模型越狱攻击:利用提示词和上下文污染绕过安全策略。

  • MCP协议生态问题:身份认证缺失、权限控制不足、审计追溯缺乏。

  • 多智能体复杂性:权限传递不一致、身份仿冒、跨智能体越权访问。


4. 企业级防护实践

4.1 大模型全生命周期安全

  • 数据安全:分类分级、加密、脱敏、数据溯源、机密计算。

  • 模型安全:漏洞扫描、推理劫持检测、持续监控。

  • 访问控制:统一身份认证、权限分级、跨平台授权。

4.2 防护架构与工具

  • LLM-WAF(大模型防火墙):实时拦截算力滥用、提示词攻击与数据泄露。

  • AI-SPM(攻击面与漏洞管理):风险态势感知与漏洞修复。

  • 天御大模型安全网关:统一身份和权限管控,连接智能体、模型与服务,实现决策链安全。


5. 风险评估与控制框架

  • 130+ 控制措施:覆盖数据、模型、MCP服务、Agent系统七大层次。

  • 测试与监控:从提示词攻击到工作流检测,形成多层次防线。

  • 统一安全水位:消除生态碎片化带来的薄弱点。


相关推荐
James. 常德 student2 小时前
华为 ai 机考 编程题解答
java·人工智能·华为
居然JuRan2 小时前
Qwen3-8B vLLM 部署调用
人工智能
GIS数据转换器3 小时前
2025无人机在低空物流中的应用实践
大数据·网络·人工智能·安全·无人机
云卓SKYDROID3 小时前
无人机台风天通信技术要点
人工智能·无人机·航电系统·高科技·云卓科技
致Great3 小时前
AI Agent的四象限法则:解码智能体应用的底层逻辑
人工智能·大模型·agent·智能体·deepresearch
余衫马3 小时前
大模型实战:通义万相2.1-文生视频-1.3B
人工智能·大模型·文生视频
阿里云大数据AI技术3 小时前
云上AI推理平台全掌握(6):大规模EP专家并行
人工智能
yanxing.D3 小时前
OpenCV轻松入门_面向python(第五章几何变换)
图像处理·人工智能·python·opencv
YC运维3 小时前
LNMP架构(分离部署)PHP与数据库交互示例
数据库·架构·php