9.24 深度学习6

1. 数据处理工作箱概述

工作箱主要包括数据处理与加载模块、TensorBoard可视化工具,以及计算机视觉相关的transforms和模型等。

2. Dataset与DataLoader详解

Dataset:其主要函数包括__len__(提供数据大小)和__getitem__(给定索引获取数据)。核心要点是将Numpy的ndarray数据类型转换为PyTorch的Tensor格式,以便利用GPU加速计算。

DataLoader:用于数据集的加载与迭代,支持批量处理和数据打乱。

3. Computer Vision (vision) 工具箱功能

Model:封装了如AlexNet、ResNet等经典预训练模型。

Dataset:集成多种开源数据集,如CIFAR-10、MNIST等。

Transforms:提供丰富的数据预处理变换,包括按比例缩放(scale)、裁剪、填充(padding)以及随机翻转、亮度/对比度/饱和度调整等功能。

4. PyTorch数据处理 pipeline

Transform用于对Pillow Image对象或模型对象进行操作,而Compose则将多个Transform串联,形成数据处理流水线。

PIL Image的常见操作:在不改变长宽比情况下,调整尺寸、剪裁图像、填充、图像水平垂直翻转、修改亮度、对比度、饱和度。

对Tensor的常见操作:标准化。

数据增强流程:演示了使用Compose对图像进行裁剪(CenterCrop)、随机水平翻转(HorizontalFlip)、转换为Tensor并标准化(Normalize)的完整数据增强流程。

处理多目录数据:展示了如何借助Dataset规范地处理位于同一父目录下不同子文件夹(image_folder)的图像数据。

5. TensorBoard可视化工具

功能作用:

可视化网络结构:提供图形化界面,清晰展示用户自定义神经网络的计算图结构。

追踪指标变化:用于可视化监控训练过程中损失(Loss)、准确率、召回率等关键评估指标的变化趋势,便于分析模型表现。

可视化特征图:可以观察模型在各层对输入数据的处理结果和特征提取情况。

基本使用流程:

程序端:导入tensorboard库,实例化SummaryWriter,并根据不同需记录的内容(如标量、图像等)调用add_xxx()方法写入数据;最后确保关闭writer以释放资源。

客户端:切换至日志文件的存储目录,在终端执行tensorboard --logdir=路径命令启动服务,即可在浏览器访问localhost:6006查看实时展示的可视化图表。

相关推荐
CODECOLLECT32 分钟前
技术解析|MDM移动设备管理系统无终身买断制度的底层逻辑
人工智能
北京迅为36 分钟前
《【北京迅为】itop-3568开发板NPU使用手册》- 第 7章 使用RKNN-Toolkit-lite2
linux·人工智能·嵌入式·npu
我是一只puppy42 分钟前
使用AI进行代码审查
javascript·人工智能·git·安全·源代码管理
阿杰学AI43 分钟前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
esmap1 小时前
ESMAP 智慧消防解决方案:以数字孪生技术构建全域感知消防体系,赋能消防安全管理智能化升级
人工智能·物联网·3d·编辑器·智慧城市
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-02-08
大数据·人工智能·经验分享·搜索引擎·产品运营
芷栀夏1 小时前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络
用户5191495848451 小时前
CVE-2025-47812:Wing FTP Server 高危RCE漏洞分析与利用
人工智能·aigc
阿里云大数据AI技术1 小时前
【AAAI2026】阿里云人工智能平台PAI视频编辑算法论文入选
人工智能
玄同7651 小时前
我的 Trae Skill 实践|使用 UV 工具一键搭建 Python 项目开发环境
开发语言·人工智能·python·langchain·uv·trae·vibe coding