基于hive和mapreduce的地铁数据分析及可视化_hive作为数据库

基于hive和mapreduce的地铁数据分析及可视化

项目概况

**👇👇👇👇👇👇👇👇**

点这里,查看所有项目

**👆👆👆👆👆👆👆👆**

数据类型

地铁数据

开发环境

centos7

软件版本

hadoop3.2.0、hive3.1.2、mysql5.7.38、jdk8、sqoop1.4.7

开发语言

Java

开发流程

数据上传(hdfs)->数据分析(mapreduce和hive)->后端(springboot)->前端(html+js+css)

可视化图表

操作步骤

启动MySQL

shell 复制代码
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

启动Hadoop

shell 复制代码
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

启动hive

shell 复制代码
# 在第一个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service metastore

# 在第二个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service hiveserver2

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

准备目录

shell 复制代码
mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "project-hive-mapreduce-subway-analysis-data-screen/project_subway_station/data/" 目录下的 "subway_station.csv" 文件 到 "/data/jobs/project/" 目录

上传文件到hdfs

shell 复制代码
cd /data/jobs/project/

hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -put -f subway_station.csv /data/input/
hdfs dfs -ls /data/input/

程序打包

shell 复制代码
cd /data/jobs/project/

# 对 "project-hive-mapreduce-subway-analysis-data-screen/project_subway_station" 目录下的项目 "project_subway_station" 进行打包
# 打包命令: mvn clean package -Dmaven.test.skip=true

# 上传 "project_subway_station/target/" 目录下的 "project_subway_station-jar-with-dependencies.jar" 文件 到 "/data/jobs/project/" 目录

mapreduce数据分析

shell 复制代码
cd /data/jobs/project/

# 上传 "project-hive-mapreduce-subway-analysis-data-screen/project_subway_station" 目录下的 "run_mr.sh" 文件 到 "/data/jobs/project/" 目录

sed -i 's/\r//g' run_mr.sh
bash run_mr.sh

# 查看结果
hdfs dfs -ls /data/output/university_station_cities/
hdfs dfs -ls /data/output/max_stations_lines/
hdfs dfs -ls /data/output/most_frequent_chars/
hdfs dfs -ls /data/output/avg_stations_per_line/
hdfs dfs -ls /data/output/top_cities_by_lines/
hdfs dfs -ls /data/output/longest_station_names/

hive数据分析

shell 复制代码
cd /data/jobs/project/

# 上传 "project-hive-mapreduce-subway-analysis-data-screen/project_subway_station" 目录下的 "hive.sql" 文件 到 "/data/jobs/project/" 目录

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

# 快速执行hive.sql
hive -v -f hive.sql

# 查看结果
hdfs dfs -ls /data/output/city_line_count/
hdfs dfs -ls /data/output/city_transfer_level/
hdfs dfs -ls /data/output/same_line_station_count_in_specific_cities/
hdfs dfs -ls /data/output/top_6_cities_by_transfer_stations/

启动可视化

shell 复制代码
cd /data/jobs/project/

# 对 "project-hive-mapreduce-subway-analysis-data-screen/project_subway_station" 目录下的项目 "project_subway_station" 进行打包
# 打包命令: mvn clean package -Dmaven.test.skip=true

# 上传 "project_subway_station/target/" 目录下的 "project_subway_station-jar-with-dependencies.jar" 文件 到 "/data/jobs/project/" 目录

java -jar /data/jobs/project/springboot-demo-1.0-SNAPSHOT.jar org.example.SpringBootApplication
相关推荐
AI营销快线4 分钟前
AI如何每日自动生成大量高质量营销素材?
大数据·人工智能
KKKlucifer20 分钟前
从 “人工标注” 到 “AI 驱动”:数据分类分级技术的效率革命
大数据·人工智能·分类
天远云服22 分钟前
Spring Boot 金融实战:如何清洗天远API的 KV 数组格式风控数据
大数据·api
哈哈哈笑什么24 分钟前
企业级高并发分布式SpringCloud系统下,订单动态超时自动取消(最终成熟方案),使用spring-cloud-starter-stream-rabbit
分布式·spring cloud·rabbitmq
哈哈哈笑什么27 分钟前
Sleuth+Zipkin 与 OpenSearch 结合是企业级分布式高并发系统的“王炸组合”
分布式·后端·spring cloud
我爱鸢尾花28 分钟前
第十四章聚类方法理论及Python实现
大数据·python·机器学习·数据挖掘·数据分析·聚类
数据猿2 小时前
【金猿人物展】涛思数据创始人、CEO陶建辉:实现AI时代时序数据库向“数据平台”的转型
大数据·数据库·人工智能·时序数据库·涛思数据
GIS数据转换器2 小时前
2025无人机遥感新国标解读
大数据·科技·安全·机器学习·无人机·智慧城市
Light602 小时前
破局“数据孤岛”:构建业务、财务、指标三位一体的智能数据模型
java·大数据·开发语言
一个java开发2 小时前
Dask 配置文件加载机制说明
大数据·python