数据源来自于Kafka的Json结构数据,数据结构为源头不断更新的小时报表,Flink的任务是处理计算并将结果输出到MySQL中。代码如下:
sql
-- Kafka源表:账户级报表
CREATE TEMPORARY TABLE kafka_account_hour_report (
`data` STRING,
`log_date` AS JSON_VALUE(`data`,'$.log_date'),
`hour_id` AS JSON_VALUE(`data`,'$.hour_id'),
`biz_code` AS JSON_VALUE(`data`,'$.bizCode'),
`ad_pv` AS JSON_VALUE(`data`,'$.ad_pv'),
`click` AS JSON_VALUE(`data`,'$.click'),
`charge` AS JSON_VALUE(`data`,'$.charge'),
`car_num` AS JSON_VALUE(`data`,'$.car_num'),
`date` VARCHAR(20),
`hour` VARCHAR(20),
`brandId` VARCHAR(64),
`accountId` VARCHAR(64),
`isBatchEnd` INT,
`offset` INT NOT NULL METADATA VIRTUAL,
`my_part` BIGINT NOT NULL METADATA FROM 'partition',
`my_time` TIMESTAMP(3) METADATA FROM 'timestamp',
`my_date` AS CAST(`my_time` AS DATE)
) WITH (
'connector' = 'kafka',
'properties.bootstrap.servers' = 'kafka-sever1:9092,kafka-server2:9092,kafka-server3:9092',
'properties.group.id' = 'flink_group',
'topic' = 'account_hour_report',
'scan.startup.mode' = 'latest-offset',
'format' = 'json'
);
-- 结果表:品牌层级小时报表
CREATE TEMPORARY TABLE mysql_brand_report_hour (
`brand_id` VARCHAR(32) COMMENT '品牌ID',
`date_hour` INT COMMENT '日期时间(YYYYMMDDHH)',
`platform_id` VARCHAR(32) COMMENT '平台ID',
`cost` DECIMAL(20,4) COMMENT '花费',
`show_num` BIGINT COMMENT '曝光量',
`click_num` BIGINT COMMENT '点击量',
PRIMARY KEY (`brand_id`,`date_hour`,`platform_id`) NOT ENFORCED
) WITH (
'connector' = 'mysql',
'hostname' = 'host_name',
'port' = '3306',
'username' = 'mysql_user',
'password' = 'password',
'database-name' = 'db_name',
'table-name' = 'ads_brand_report_hour'
);
-- 账户数据解析
CREATE TEMPORARY VIEW view_account_report_ori AS
SELECT
TO_DATE(FROM_UNIXTIME(CAST(`log_date` AS BIGINT)/1000,'yyyy-MM-dd')) AS stat_date,
LPAD(`hour_id`,2,'0') AS stat_hour,
`brandId` AS brand_id,
`accountId` AS account_id,
`biz_code` AS biz_code,
`isBatchEnd` AS batch_end,
CAST(`charge` AS DECIMAL(20,5)) AS cost,
CAST(`ad_pv` AS INT) AS show_num,
CAST(`click` AS INT) AS click_num,
CONCAT(SUBSTR(`date`,1,4),SUBSTR(`date`,6,2),SUBSTR(`date`,9,2)) AS batch_date,
`hour` AS batch_hour,
my_time
FROM kafka_account_hour_report
WHERE FROM_UNIXTIME(CAST(`log_date` AS BIGINT)/1000,'yyyy-MM-dd')>=
DATE_FORMAT(TIMESTAMPADD(HOUR,-1,LOCALTIMESTAMP),'yyyy-MM-dd') AND `isBatchEnd`=0;
-- 去重并汇总作为小时报中间表
CREATE TEMPORARY VIEW view_brand_report_stg AS
SELECT
stat_date,
brand_id,
batch_date,
batch_hour,
IFNULL(SUM(show_num),0) AS show_num,
IFNULL(SUM(click_num),0) AS click_num,
IFNULL(SUM(cost),0) AS cost
FROM
(
SELECT *,ROW_NUMBER() OVER(PARTITION BY stat_date,brand_id,account_id,biz_code,
batch_date,batch_hour ORDER BY my_time DESC) AS rn
FROM view_account_report_ori t
) t
WHERE rn=1
GROUP BY stat_date,brand_id,batch_date,batch_hour;
-- 小时报结果
CREATE TEMPORARY VIEW view_brand_report_res AS
SELECT
brand_id,
CAST(CONCAT(batch_date,batch_hour) AS INT) AS date_hour,
'1003' AS platform_id,
ROUND(cost,4) AS cost,
show_num,
click_num
FROM view_brand_report_stg;
-- Sink 开始
BEGIN STATEMENT SET;
-- 插入小时报 --
INSERT INTO mysql_brand_report_hour
SELECT
brand_id,
date_hour,
platform_id,
cost,
show_num,
click_num
FROM view_brand_report_res;
END;
-- Sink结束
以上程序实现了从Kafka源表(主题/Topic为account_hour_report)消费数据,然后进行过滤、解析、去重、聚合等计算,最后将结果写入到MySQL结果表ads_brand_report_hour中。