R语言——离群点检测应用

离群点检测

数据的离群点检测算法有很多,尤其是在R语言的DDoutlier包中,包含了多种基于距离或密度的离群点检测算法。例如:LOF(局部离群值因子算法)、COF(基于连通性的离群因子算法)、DB(在给定邻居数量后基于距离的离群点检测算法)、KDEOS(基于高斯核的和密度离群点检测算法)、LDF(基于高斯核的局部密度因子算法)等。下面不会将所有的算法都一一介绍,会主要介绍LOFCOF两种离群点检测算法,其他的离群点检测算法的使用方式与它们类似。

LOF离群点检测

局部离群值因子(Local Outlier Factor,LOF)算法,会通过估计每个样本和它的局部邻域的分离程度来获得样本的离群值得分。如果样本的局部密度低,LOF得分会很大,那么可能会被看做是离群值,但该算法不能给出是否为异常值的确切判断。

LOF算法可以使用DDoutlier包中的LOF()函数,下面使用数据(离群点检测数据.csv )来演示如何进行异常值检测,该数据集实际上是鸢尾花数据集,使用主成分分析降维到二维后的数据,一共有两个数据特征,使用二维数据是为了数据方便数据的可视化分析,实际上LOF等离群点检测算法在使用时,没有数据维度上的限制。在程序中,计算出每个点的LOF得分后,通过判断其取值是否大于3来确定是否为异常值,如果大于3则认为其是离群点,然后将可视化的离群点的检测效果。

复制代码
library(DDoutlier)
library(tidyverse)
library(gridExtra)

## 读取数据
outldata <- read.csv("data/chap11/离群点检测数据.csv")
head(outldata)
##      Comp.1     Comp.2
## 1 -2.264703  0.4800266
## 2 -2.080961 -0.6741336
## 3 -2.364229 -0.3419080
## 4 -2.299384 -0.5973945
## 5 -2.389842  0.6468354
## 6 -2.075631  1.4891775


## 以周围k个点判断离群点
lof1 <- LOF(outldata,k = 2)
## 使用散点图可视化出每个点的离群点得分大小
plotdata <- outldata
plotdata$score <- lof1
plotdata$isOutlier <- as.factor(ifelse(lof1 > 3,"是","否"))
ggplot(plotdata,aes(x = Comp.1,y = Comp.2))+
  geom_point(aes(size = score,shape = isOutlier),alpha = 0.8)+
  scale_shape_manual(values=c(16,15))+
  ggtitle("LOF离群点检测")

运行程序可获得可视化图像1。

图1: LOF离群点检测

前面使用LOF得分是否大于3判断样本是否为离群点,具有一定的主观性。从图1中可以发现将一个点认为了是离群点。

下面分析在不同的k值(近邻数量)下,每个样本的LOF得分的大小,并将结果进行可视化,运行下面的程序可获得可视化图像2。

复制代码
## 分析在不同的k值情况下,样本LOF得分的大小情况
ks <- c(2,5,8,11)
plots <- list()
for (ii in 1:length(ks)){
  lof1 <- LOF(outldata,k = ks[ii])
  plotdata <- outldata
  plotdata$score <- lof1-0.4
  plotdata$isOutlier <- as.factor(ifelse(lof1 > 3,"是","否"))
  plots[[ii]] <- ggplot(plotdata,aes(x = Comp.1,y = Comp.2))+
    geom_point(aes(size = score,shape = isOutlier),alpha = 0.8)+
    scale_shape_manual(values=c(16,15))+
    ggtitle(paste("LOF:k =",ks[ii],"离群点数量 =",sum(lof1 > 3)))+
    theme(legend.position = "none")
}
grid.arrange(plots[[1]],plots[[2]],plots[[3]],plots[[4]],nrow = 2)

图2: 近邻数对结果的影响

从图2中可以发现,当k=2时识别出1个离群点,当k=5时识别出3个离群点,当k=8时识别出3个离群点,当k=11时识别出2个离群点。

COF离群点检测

COF异常值检测算法和LOF的思想类似,也会给出一个是异常值可能性的得分,得分越大,对应的样本是异常值的可能性就越大。

下面使用COF算法计算每个样本是否为离群点,使用COF()函数,该函数同样可以使用参数k指定计算时使用的近邻数量,运行下面的程序可获得如图3所示的离群点检测结果。

复制代码
## 以周围k个点判断离群点
cof1 <- COF(outldata,k = 2)
## 使用散点图可视化出每个点的离群点得分大小
plotdata <- outldata
plotdata$score <- cof1
plotdata$isOutlier <- as.factor(ifelse(cof1 > 3,"是","否"))
ggplot(plotdata,aes(x = Comp.1,y = Comp.2))+
  geom_point(aes(size = score,shape = isOutlier),alpha = 0.8)+
  scale_shape_manual(values=c(16,15))+
  ggtitle("COF离群点检测")

图3:COF离群点检测

从图13中可知,以3为COF离群点检测的阈值,可以发现数据中有1个离群点。

数据获取

|---------------------|
| 今天的分享就到这里了,敬请期待下一篇! |

最后欢迎大家分享转发,您的点赞是对我的鼓励和肯定!

相关推荐
阿里云大数据AI技术2 小时前
阿里云OpenLake及行业解决方案年度发布,助力千行百业Data+AI一体化融合
大数据
极度畅想3 小时前
脑电模型实战系列:入门脑电情绪识别-用最简单的DNN模型起步
神经网络·数据可视化·模型训练·eeg·生理信号处理
阿里云大数据AI技术3 小时前
云栖2025 | 阿里云开源大数据发布新一代“湖流一体”数智平台及全栈技术升级
数据分析
小松XXS4 小时前
elasticsearch面试八股文
大数据·elasticsearch·面试
哈哈很哈哈5 小时前
Spark核心Shuffle详解(一)ShuffleManager
大数据·分布式·spark
星川皆无恙6 小时前
电商机器学习线性回归:基于 Python 电商数据爬虫可视化分析预测系统
大数据·人工智能·爬虫·python·机器学习·数据分析·线性回归
码界筑梦坊6 小时前
246-基于Django的美食菜谱数据分析推荐系统
数据分析·django·美食
字节跳动数据平台6 小时前
极氪汽车×火山引擎:AI数据专家“上岗”,注入“分钟级”数据洞察力
大数据
智慧化智能化数字化方案7 小时前
【精品资料鉴赏】873页5A级智慧景区信息化规划设计方案
大数据·智慧旅游·智慧景区·5a级智慧景区