9.28 深度学习10

​​1. 模型调试与轻量化方法​​

通过为模型各层创建"钩子函数"来实时监控参数信息的技术,此方式有助于大幅降低调试阶段的内存占用,实现轻量化分析。

"轻量级网络"的核心思想:通过减少参数量(例如使用全局平均池化)来降低计算成本,使其能在普通计算机上运行,与集成学习的优势形成互斥。

​​2. 集成学习原理回顾​​

集成学习通过组合多个基学习器来提升性能的核心思想,前提是这些学习器的表现有差异(各有千秋)且性能都较高。

针对分类问题,明确了采用"投票法"(如多数投票)整合多个模型的预测结果。

针对回归问题,明确了通过"加权取平均"或"普通平均"等方法整合多个模型的连续预测数值,并区分了普通平均与加权平均的不同应用场景。

​​3. 回归问题的评估标准​​

在回归问题中,无法直接套用分类问题中的"准确率"。因此,引入了专门的评估指标。

强调"均方误差"(MSE)是评价回归模型优劣的关键标准,它衡量了预测值与真实值之间的差距平方的平均数。

补充说明了"R方"(决定系数)是另一个常用的回归评估指标,用于衡量模型解释数据方差的能力。

为保证模型评估的一致性和公正性,模型在训练集和测试集上的数据预处理步骤(如标准化)必须保持完全相同。

相关推荐
لا معنى له14 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI16 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.18 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight18 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha18 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir18 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王19 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室20 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛1120 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI20 小时前
RAG系列(一) 架构基础与原理
人工智能·架构