9.28 深度学习10

​​1. 模型调试与轻量化方法​​

通过为模型各层创建"钩子函数"来实时监控参数信息的技术,此方式有助于大幅降低调试阶段的内存占用,实现轻量化分析。

"轻量级网络"的核心思想:通过减少参数量(例如使用全局平均池化)来降低计算成本,使其能在普通计算机上运行,与集成学习的优势形成互斥。

​​2. 集成学习原理回顾​​

集成学习通过组合多个基学习器来提升性能的核心思想,前提是这些学习器的表现有差异(各有千秋)且性能都较高。

针对分类问题,明确了采用"投票法"(如多数投票)整合多个模型的预测结果。

针对回归问题,明确了通过"加权取平均"或"普通平均"等方法整合多个模型的连续预测数值,并区分了普通平均与加权平均的不同应用场景。

​​3. 回归问题的评估标准​​

在回归问题中,无法直接套用分类问题中的"准确率"。因此,引入了专门的评估指标。

强调"均方误差"(MSE)是评价回归模型优劣的关键标准,它衡量了预测值与真实值之间的差距平方的平均数。

补充说明了"R方"(决定系数)是另一个常用的回归评估指标,用于衡量模型解释数据方差的能力。

为保证模型评估的一致性和公正性,模型在训练集和测试集上的数据预处理步骤(如标准化)必须保持完全相同。

相关推荐
MIXLLRED2 小时前
YOLO学习——训练进阶和预测评价指标
深度学习·学习·yolo
远山枫谷2 小时前
如何通过nodean安装n8n以及可能遇到的问题
人工智能
AIGC_北苏2 小时前
EvalScope模型压力测试实战
人工智能·语言模型·模型评估·框架评估
CheungChunChiu2 小时前
AI 模型部署体系全景:从 PyTorch 到 RKNN 的嵌入式类比解析
人工智能·pytorch·python·模型
分布式存储与RustFS3 小时前
存算一体架构的先行者:RustFS在异构计算环境下的探索与实践
大数据·人工智能·物联网·云原生·对象存储·minio·rustfs
Scc_hy3 小时前
强化学习_Paper_2000_Eligibility Traces for Off-Policy Policy Evaluation
人工智能·深度学习·算法·强化学习·rl
IT小哥哥呀3 小时前
论文见解:REACT:在语言模型中协同推理和行动
前端·人工智能·react.js·语言模型
来酱何人3 小时前
低资源NLP数据处理:少样本/零样本场景下数据增强与迁移学习结合方案
人工智能·深度学习·分类·nlp·bert
ChinaRainbowSea3 小时前
11. Spring AI + ELT
java·人工智能·后端·spring·ai编程
王彦臻3 小时前
YOLOv3 技术总结
深度学习·yolo·目标跟踪