9.28 深度学习10

​​1. 模型调试与轻量化方法​​

通过为模型各层创建"钩子函数"来实时监控参数信息的技术,此方式有助于大幅降低调试阶段的内存占用,实现轻量化分析。

"轻量级网络"的核心思想:通过减少参数量(例如使用全局平均池化)来降低计算成本,使其能在普通计算机上运行,与集成学习的优势形成互斥。

​​2. 集成学习原理回顾​​

集成学习通过组合多个基学习器来提升性能的核心思想,前提是这些学习器的表现有差异(各有千秋)且性能都较高。

针对分类问题,明确了采用"投票法"(如多数投票)整合多个模型的预测结果。

针对回归问题,明确了通过"加权取平均"或"普通平均"等方法整合多个模型的连续预测数值,并区分了普通平均与加权平均的不同应用场景。

​​3. 回归问题的评估标准​​

在回归问题中,无法直接套用分类问题中的"准确率"。因此,引入了专门的评估指标。

强调"均方误差"(MSE)是评价回归模型优劣的关键标准,它衡量了预测值与真实值之间的差距平方的平均数。

补充说明了"R方"(决定系数)是另一个常用的回归评估指标,用于衡量模型解释数据方差的能力。

为保证模型评估的一致性和公正性,模型在训练集和测试集上的数据预处理步骤(如标准化)必须保持完全相同。

相关推荐
阿里云大数据AI技术1 小时前
【AAAI2026】阿里云人工智能平台PAI视频编辑算法论文入选
人工智能
玄同7651 小时前
我的 Trae Skill 实践|使用 UV 工具一键搭建 Python 项目开发环境
开发语言·人工智能·python·langchain·uv·trae·vibe coding
苍何2 小时前
腾讯重磅开源!混元图像 3.0 图生图真香!
人工智能
千里马也想飞2 小时前
人工智能在医疗领域的应用与研究论文写作实操:AI辅助快速完成框架+正文创作
人工智能
Rorsion2 小时前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
勾股导航2 小时前
K-means
人工智能·机器学习·kmeans
liliangcsdn2 小时前
Diff2Flow中扩散和流匹配的对齐探索
人工智能
SmartBrain2 小时前
战略洞察:以AI为代表的第四次工业革命
人工智能·语言模型·aigc
一个处女座的程序猿2 小时前
AI之Agent之VibeCoding:《Vibe Coding Kills Open Source》翻译与解读
人工智能·开源·vibecoding·氛围编程
Jay Kay2 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习