深度学习打卡第N7周:调用Gensim库训练Word2Vec模型

一、准备工作

复制代码
import jieba

jieba.suggest_freq('沙瑞金',True)#加入一些词,使得jieba分词准确率更高
jieba.suggest_freq('田国富',True)
jieba.suggest_freq('高育良',True)
jieba.suggest_freq('侯亮平',True)
jieba.suggest_freq('钟小艾',True)
jieba.suggest_freq('陈岩石',True)
jieba.suggest_freq('欧阳菁',True)
jieba.suggest_freq('易学习',True)
jieba.suggest_freq('王大路',True)
jieba.suggest_freq('蔡成功',True)
jieba.suggest_freq('孙连城',True)
jieba.suggest_freq('季昌明',True)
jieba.suggest_freq('丁义珍',True)
jieba.suggest_freq('郑西坡',True)
jieba.suggest_freq('赵东来',True)
jieba.suggest_freq('高小琴',True)
jieba.suggest_freq('赵瑞龙',True)
jieba.suggest_freq('林华华',True)
jieba.suggest_freq('陆亦可',True)
jieba.suggest_freq('刘新建',True)
jieba.suggest_freq('刘庆祝',True)
jieba.suggest_freq('赵德汉',True)

with open('./data/in_the_name_of_people.txt',encoding='utf-8') as f:
    result_cut = []
    lines = f.readlines()
    for line in lines:
        result_cut.append(jieba.lcut(line))

f.close()

result_cut

# 添加自定义停用词
stopwords_list = [",","。","\n","\u3000"," ",":","!","?","..."] # \u3000 是 Unicode 编码中的全角空格(也称为 "全角空白符"),是中文排版中常用的空格形式。

def remove_stopwords(ls):  # 去除停用词
    return [word for word in ls if word not in stopwords_list]

result_stop=[remove_stopwords(x) for x in result_cut if remove_stopwords(x)]

result_stop

print(result_stop[100:103])

二、训练Word2Vec模型

复制代码
from gensim.models import Word2Vec

model = Word2Vec(result_stop,     # 用于训练的语料数据
                 vector_size=100, # 是指特征向量的维度,默认为100。
                 window=5,        # 一个句子中当前单词和被预测单词的最大距离。
                 min_count=1)     # 可以对字典做截断,词频少于min_count次数的单词会被丢弃掉, 默认值为5。

三、模型应用

3.1 计算词汇相似性

复制代码
# 计算两个词的相似度
print(model.wv.similarity('沙瑞金', '季昌明'))
print(model.wv.similarity('沙瑞金', '田国富'))
复制代码
# 选出最相似的5个词
for e in model.wv.most_similar(positive=['沙瑞金'], topn=5):
    print(e[0], e[1])

3.2 找出不匹配的词汇

复制代码
odd_word = model.wv.doesnt_match(["苹果", "香蕉", "橙子", "书"])
print(f"在这组词汇中不匹配的词汇:{odd_word}")

3.2 计算词汇的词频

复制代码
word_frequency = model.wv.get_vecattr("沙瑞金", "count")
print(f"沙瑞金:{word_frequency}")

总结

本次打卡学习了word2vec模型的调用和使用,了解到了其在文本任务中的作用和便利性。

相关推荐
-大头.10 小时前
2025 Maven终极实战:AI与云原生构建新范式
人工智能·云原生·maven
专注数据的痴汉10 小时前
「数据获取」中华人民共和国乡镇行政区划简册(2010-2017)(2011-2012缺失)
大数据·人工智能·信息可视化
Aspect of twilight10 小时前
三种降维方式(PCA,t-SNE,UMAP)详解
深度学习·降维
ULTRA??10 小时前
强化学习算法分类,工具箱AI总结
开发语言·c++·人工智能
老欧学视觉10 小时前
0014机器学习案例一电信客户流失预测
人工智能·机器学习
shayudiandian10 小时前
TensorFlow vs PyTorch:哪个更适合你?
人工智能·pytorch·tensorflow
yiersansiwu123d10 小时前
AI 重构就业生态:结构性变革下的生存法则与突围路径
人工智能·重构
专注数据的痴汉10 小时前
「数据获取」中国河流水系 2000 至 2022 年变化矢量数据集
大数据·人工智能·信息可视化
海边夕阳200610 小时前
【每天一个AI小知识】:什么是自然语言处理?
人工智能·深度学习·计算机视觉·语言模型·自然语言处理
我很哇塞耶10 小时前
告别VAE压缩损耗,南京大学用DiP让扩散模型回归像素空间,实现10倍加速与SOTA级画质
人工智能·ai·大模型·图像生成