深度学习打卡第N7周:调用Gensim库训练Word2Vec模型

一、准备工作

复制代码
import jieba

jieba.suggest_freq('沙瑞金',True)#加入一些词,使得jieba分词准确率更高
jieba.suggest_freq('田国富',True)
jieba.suggest_freq('高育良',True)
jieba.suggest_freq('侯亮平',True)
jieba.suggest_freq('钟小艾',True)
jieba.suggest_freq('陈岩石',True)
jieba.suggest_freq('欧阳菁',True)
jieba.suggest_freq('易学习',True)
jieba.suggest_freq('王大路',True)
jieba.suggest_freq('蔡成功',True)
jieba.suggest_freq('孙连城',True)
jieba.suggest_freq('季昌明',True)
jieba.suggest_freq('丁义珍',True)
jieba.suggest_freq('郑西坡',True)
jieba.suggest_freq('赵东来',True)
jieba.suggest_freq('高小琴',True)
jieba.suggest_freq('赵瑞龙',True)
jieba.suggest_freq('林华华',True)
jieba.suggest_freq('陆亦可',True)
jieba.suggest_freq('刘新建',True)
jieba.suggest_freq('刘庆祝',True)
jieba.suggest_freq('赵德汉',True)

with open('./data/in_the_name_of_people.txt',encoding='utf-8') as f:
    result_cut = []
    lines = f.readlines()
    for line in lines:
        result_cut.append(jieba.lcut(line))

f.close()

result_cut

# 添加自定义停用词
stopwords_list = [",","。","\n","\u3000"," ",":","!","?","..."] # \u3000 是 Unicode 编码中的全角空格(也称为 "全角空白符"),是中文排版中常用的空格形式。

def remove_stopwords(ls):  # 去除停用词
    return [word for word in ls if word not in stopwords_list]

result_stop=[remove_stopwords(x) for x in result_cut if remove_stopwords(x)]

result_stop

print(result_stop[100:103])

二、训练Word2Vec模型

复制代码
from gensim.models import Word2Vec

model = Word2Vec(result_stop,     # 用于训练的语料数据
                 vector_size=100, # 是指特征向量的维度,默认为100。
                 window=5,        # 一个句子中当前单词和被预测单词的最大距离。
                 min_count=1)     # 可以对字典做截断,词频少于min_count次数的单词会被丢弃掉, 默认值为5。

三、模型应用

3.1 计算词汇相似性

复制代码
# 计算两个词的相似度
print(model.wv.similarity('沙瑞金', '季昌明'))
print(model.wv.similarity('沙瑞金', '田国富'))
复制代码
# 选出最相似的5个词
for e in model.wv.most_similar(positive=['沙瑞金'], topn=5):
    print(e[0], e[1])

3.2 找出不匹配的词汇

复制代码
odd_word = model.wv.doesnt_match(["苹果", "香蕉", "橙子", "书"])
print(f"在这组词汇中不匹配的词汇:{odd_word}")

3.2 计算词汇的词频

复制代码
word_frequency = model.wv.get_vecattr("沙瑞金", "count")
print(f"沙瑞金:{word_frequency}")

总结

本次打卡学习了word2vec模型的调用和使用,了解到了其在文本任务中的作用和便利性。

相关推荐
小姐姐味道9 小时前
AI应用时代:多读论文勤尝试,少做讨论少分享,是活下去的关键
人工智能·程序员·开源
星期天要睡觉9 小时前
大模型(Large Language Model, LLM)——什么是大模型,大模型的基本原理、架构、流程
人工智能·python·ai·语言模型
墨利昂9 小时前
机器学习和深度学习模型训练流程
人工智能·深度学习·机器学习
wktomo9 小时前
数据挖掘比赛baseline参考
人工智能·数据挖掘
言之。9 小时前
大语言模型科普报告
人工智能·语言模型·自然语言处理
文火冰糖的硅基工坊9 小时前
[人工智能-大模型-27]:大模型应用层技术栈 - 大语言模型中的token是什么?
人工智能·语言模型·自然语言处理
Test-Sunny9 小时前
【AI增强质量管理体系结构】AI+自动化测试引擎 与Coze
人工智能
gaosushexiangji9 小时前
庆祝第33届国际高速成像与光子学会议盛大召开(I)—sCMOS相机在物理与光电成像领域应用
人工智能·制造
gaosushexiangji9 小时前
恭贺第33届国际高速成像与光子学会议盛大召开(II)—sCMOS相机在细胞与生物成像领域应用
人工智能
一点一木9 小时前
ChatGPT Atlas 发布:把 AI 直插进浏览器的一次重构
人工智能·chatgpt·浏览器