第三章 鸽巢原理

简单形式

简单的来说就是两个几何的映射无法做到一一对应就可能导致鸽巢原理。

应用

这里的要点为序列的联系子集可以看成两个从a1开始的序列的差:

由题目条件得知:我们需要求两个从a1开始的连续序列除以m有相同的余数

然后在这个新的问题中也是假设不能有余数为0的,因此,余数的个数少于总情况数,可以使用鸽巢原理。

由上题得知,还是要转化为两个连续序列的差。而这两个连续序列满足的条件为ai=aj+21a_i =a_j + 21ai=aj+21,由此构造一个新的序列(包含aai+21a_i + 21ai+21的序列),在这个序列中用鸽巢原理。

此题关键是要知道整数的表达形式,这样应该可以解决所有的两数整除问题。

这里首先列出了余a所有情况,然后证明了其除以n的余数各不相同。、

加强版

加强版是在简单形式的基础上对每个鸽巢的鸽子数提出了要求。

由此我们得出了结论:鸽巢原理本质是求最高的下限,因此我们总是要平均情况(最不极端的分配情况)


题干解析:这里说的意思其实是,任意一种小盘子,总能找到一种摆放方式,使得相同颜色的扇形至少为100.

关键点:这题其实可以算出无论是什么小盘子,其所有摆放的重合颜色总数是一样的,都是20000种,而一共有200种摆放方式,则可有平均值定理证明。

思路说明:假设不存在n +1递增子序列的情况,证明递减。

将整体分为每组n个的递增数列,结果会出现n + 1.

然后再证明这n + 1的情况必然是递减即可。

Ramsey定理


证明方法如上图所示,K6中,每个结点都有5条边,对于二着色来说,必定会有三条边着同一颜色。如上图设定是着红色。如果三条红边两两相邻均是黄边,则有一个单色三角形;若有一条红遍,也会和过x的红边组成三角形。

更一般的Ramsey定理


对于这一步进行说明:

|Rx|+|Bx|=p-1=r(m-1, n)+r(m, n-1)-1⇒|Rx|≥r(m-1, n)或者|Bx|≥ r(m, n-1)假设|Rx|≥r(m-1, n)成立。

其实和简单,假设这两个条件同时不成立就能明白了。

最后证明的这个不等式实际就证明了存在上界,然后这种数本来就存在下界,这样就证明了其存在。

相关推荐
芒果量化1 分钟前
Optuna - 自动调参利器&python实例
开发语言·python·算法·机器学习
麦麦大数据5 分钟前
D025 摩托车推荐价格预测可视化系统|推荐算法|机器学习|预测算法|用户画像与数据分析
mysql·算法·机器学习·django·vue·推荐算法·价格预测
CoovallyAIHub31 分钟前
IDEA研究院发布Rex-Omni:3B参数MLLM重塑目标检测,零样本性能超越DINO
深度学习·算法·计算机视觉
蒙奇D索大1 小时前
【操作系统】408操作系统核心考点精讲:宏内核、微内核与外核架构全解析
笔记·考研·架构·改行学it
豐儀麟阁贵1 小时前
4.4数组的基本操作
java·开发语言·数据结构·算法
无限进步_1 小时前
【C语言】在矩阵中高效查找数字的算法解析
c语言·开发语言·数据结构·c++·其他·算法·矩阵
小白要加油努力1 小时前
滑动窗口的典例以及思路阐述
算法
DARLING Zero two♡1 小时前
告别笔记局限!Blinko+cpolar让AI笔记随时随地可用
人工智能·笔记
CoovallyAIHub2 小时前
一夜之间,大模型处理长文本的难题被DeepSeek新模型彻底颠覆!
深度学习·算法·计算机视觉
再睡一夏就好2 小时前
【C++闯关笔记】STL:deque与priority_queue的学习和使用
java·数据结构·c++·笔记·学习·